scholarly journals LncRNA LEF1-AS1 Promotes Metastasis of Prostatic Carcinoma via the Wnt/β-Catenin Pathway

2020 ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background: Long noncoding RNAs (lncRNAs), which are important functional regulators in cancer, have emerged as critical molecular regulators in various biological processes. However, the mechanisms by which LEF1-AS1 modulates Androgen-Independent Prostate Cancer (AIPC) development remain largely unknown.Methods: The LEF1-AS1 expression level was detected in tumour tissues and adjacent normal tissues of AIPC patients by using next-generation sequencing technology and qRT-PCR. Cell proliferation, migration and invasion were assessed by colony formation, EDU assays and transwell assays, respectively. Xenograft assay was conducted to determine the effect of LEF1-AS1 on cell proliferation in vivo.Results: LEF1-AS1 promoted the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and in vivo. In this mechanism, LEF1-AS1 recruited the transcription factor C-myb to the promoter region of FZD2, which activated FZD2 transcription. Moreover, LEF1-AS1 functioned as a competing endogenous RNA (ceRNA) acting as a sponge for miR-328, which activated CD44.Conclusion: Collectively, these data indicate that LEF1-AS1 is a tumour promoter in the development of AIPC and that it may contribute to the improvement of AIPC diagnosis and therapy.

2020 ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background Long noncoding RNAs (lncRNAs), which are important functional regulators in cancer, have emerged as critical molecular regulators in various biological processes. However, the mechanisms by which LEF1-AS1 modulates Androgen-Independent Prostate Cancer (AIPC) development remain largely unknown. Methods The LEF1-AS1 expression level was detected in tumour tissues and adjacent normal tissues of AIPC patients by using next-generation sequencing technology and qRT-PCR. Cell proliferation, migration and invasion were assessed by colony formation, EDU assays and transwell assays, respectively. Xenograft assay was conducted to determine the effect of LEF1-AS1 on cell proliferation in vivo. Results LEF1-AS1 promoted the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and in vivo. In this mechanism, LEF1-AS1 recruited the transcription factor C-myb to the promoter region of FZD2, which activated FZD2 transcription. Moreover, LEF1-AS1 functioned as a competing endogenous RNA (ceRNA) acting as a sponge for miR-328, which activated CD44. Conclusion Collectively, these data indicate that LEF1-AS1 is a tumour promoter in the development of AIPC and that it may contribute to the improvement of AIPC diagnosis and therapy.


2020 ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background: Long noncoding RNAs (lncRNAs), which are important functional regulators in cancer, have emerged as critical molecular regulators in various biological processes. However, the mechanisms by which LEF1-AS1 modulates Androgen-Independent Prostate Cancer (AIPC) development remain largely unknown.Methods: The LEF1-AS1 expression level was detected in tumour tissues and adjacent normal tissues of AIPC patients by using next-generation sequencing technology and qRT-PCR. Cell proliferation, migration and invasion were assessed by colony formation, EDU assays and transwell assays, respectively. Xenograft assay was conducted to determine the effect of LEF1-AS1 on cell proliferation in vivo.Results: LEF1-AS1 promoted the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and in vivo. In this mechanism, LEF1-AS1 recruited the transcription factor C-myb to the promoter region of FZD2, which activated FZD2 transcription. Moreover, LEF1-AS1 functioned as a competing endogenous RNA (ceRNA) acting as a sponge for miR-328, which activated CD44.Conclusion: Collectively, these data indicate that LEF1-AS1 is a tumour promoter in the development of AIPC and that it may contribute to the improvement of AIPC diagnosis and therapy.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background Long noncoding RNAs (lncRNAs) are important functional regulators of many biological processes of cancers. However, the mechanisms by which lncRNAs modulate androgen-independent prostate cancer (AIPC) development remain largely unknown. Methods Next-generation sequencing technology and RT-qPCR were used to assess LEF1-AS1 expression level in AIPC tissues and adjacent normal tissues. Functional in vitro experiments, including colony formation, EDU and transwell assays were performed to assess the role of LEF1-AS1 in AIPC. Xenograft assays were conducted to assess the effect of LEF1-AS1 on cell proliferation in vivo. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) assays were performed to elucidate the regulatory network of LEF1-AS1. Results The next-generation sequencing results showed that LEF1-AS1 is significantly overexpressed in AIPC. Furthermore, our RT-qPCR assay data showed that LEF1-AS1 is overexpressed in AIPC tissues. Functional experiments showed that LEF1-AS1 promotes the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and tumour growth in vivo by recruiting the transcription factor C-myb to the promoter of FZD2, inducing its transcription. Furthermore, LEF1-AS1 was shown to function as a competing endogenous RNA (ceRNA) that sponges miR-328 to activate CD44. Conclusion In summary, the results of our present study revealed that LEF1-AS1 acts as a tumour promoter in the progression of AIPC. Furthermore, the results revealed that LEF1-AS1 functions as a ceRNA and regulates Wnt/β-catenin pathway activity via FZD2 and CD44. Our results provide new insights into the mechanism that links the function of LEF1-AS1 with AIPC and suggests that LEF1-AS1 may serve as a novel potential target for the improvement of AIPC therapy.


2020 ◽  
Author(s):  
Weiyuan Li ◽  
Ganggang Yang ◽  
Dengke Yang ◽  
Dong Li ◽  
Qian Sun

Abstract Background: Long noncoding RNAs (lncRNAs) are important functional regulators of many biological processes of cancers. However, the mechanisms by which lncRNAs modulate androgen-independent prostate cancer (AIPC) development remain largely unknown.Methods: Next-generation sequencing technology and RT-qPCR were used to assess LEF1-AS1 expression level in AIPC tissues and adjacent normal tissues. Functional in vitro experiments, including colony formation, EDU and transwell assays were performed to assess the role of LEF1-AS1 in AIPC. Xenograft assays were conducted to assess the effect of LEF1-AS1 on cell proliferation in vivo. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) assays were performed to elucidate the regulatory network of LEF1-AS1.Results: The next-generation sequencing results showed that LEF1-AS1 is significantly overexpressed in AIPC. Furthermore, our RT-qPCR assay data showed that LEF1-AS1 is overexpressed in AIPC tissues. Functional experiments showed that LEF1-AS1 promotes the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and tumour growth in vivo by recruiting the transcription factor C-myb to the promoter of FZD2, inducing its transcription. Furthermore, LEF1-AS1 was shown to function as a competing endogenous RNA (ceRNA) that sponges miR-328 to activate CD44.Conclusion: In summary, the results of our present study revealed that LEF1-AS1 acts as a tumour promoter in the progression of AIPC. Furthermore, the results revealed that LEF1-AS1 functions as a ceRNA and regulates Wnt/β-catenin pathway activity via FZD2 and CD44. Our results provide new insights into the mechanism that links the function of LEF1-AS1 with AIPC and suggests that LEF1-AS1 may serve as a novel potential target for the improvement of AIPC therapy.


Author(s):  
Yingying Wang ◽  
Yongjie Tian

miR-206 and Bcl-2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. We investigated the expressions and mechanisms of miR-206 and BAG3 in CC using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEECs. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration, and invasion in vitro, and the 3′-untranslated region (3′-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2, and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 overexpression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR-206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human CC. Thus, miR-206-BAG3 can be used as a useful target for CC.


Author(s):  
Chengwei Zhou ◽  
Jianxiang Xu ◽  
Jinti Lin ◽  
Renjin Lin ◽  
Kai Chen ◽  
...  

Long noncoding RNA (lncRNA) FEZF1-AS1 was demonstrated to facilitate cell proliferation and migration in some cancers. However, the functions of FEZF1-AS1 and its molecular mechanism in osteosarcoma remain to be elucidated. In our study, we found that the expression of FEZF1-AS1 was upregulated in osteosarcoma samples and cell lines compared with normal tissues or cells. Besides, we showed that the expression levels of FEZF1-AS1 in osteosarcoma patients were positively correlated with tumor metastasis and TNM stage. Additionally, FEZF1-AS1 knockdown inhibited cell proliferation, migration, and invasion in U2OS and MG63 cells, while upregulation had the opposite effects in vitro. Moreover, FEZF1-AS1 depletion inhibited tumor growth and metastasis in vivo. We found that FEZF1-AS1 sponged miR-4443 to promote NUPR1 expression in U2OS and MG63 cells. Furthermore, knockdown of miR-4443 abrogated FEZF1-AS1 silencing-induced inhibition of cell proliferation, migration, and invasion in osteosarcoma. Finally, we found that restoration of NUPR1 rescued the proliferation, migration, and invasion abilities of FEZF1-AS1-depleted U2OS and MG63 cells. Our study indicated that FEZF1-AS1 could promote osteosarcoma progression by sponging miR-4443 to promote NUPR1 expression. The FEZF1-AS1/miR-4443/NUPR1 axis may act as a novel therapeutic strategy for osteosarcoma treatment.


2016 ◽  
Vol 38 (2) ◽  
pp. 836-846 ◽  
Author(s):  
Liyang Dong ◽  
Junwei Ni ◽  
Wenhao Hu ◽  
Chang Yu ◽  
Haiyan Li

Background/Aims: PlncRNA-1 has been demonstrated to promote malignancy in various cancers. The present study aims to investigate the expression pattern, prognosis value and the function of PlncRNA-1 in human hepatocellular carcinoma (HCC). Methods: The expression of PlncRNA-1 in 84 pairs of HCC and their matched normal tissues was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of PlncRNA-1 expression and clinicopathological characteristics and prognosis were also analyzed. The biological role of PlncRNA-1 in cell proliferation, migration and invasion was examined in vitro and in vivo. Results: The results showed that the level of PlncRNA-1 expression was significantly increased in HCC tissues and significantly correlated with tumor size, vascular invasion and advanced TNM stage. Moreover, patients with high levels of PlncRNA-1 expression had relatively poor prognostic outcomes, serving as an independent prognostic factor for HCC. In vitro functional assays indicated that knockdown of PlncRNA-1 expression significantly reduced cell proliferation, migration and invasion by inhibiting the epithelial-mesenchymal transition (EMT) signaling. Animal model experiments confirmed the ability of PlncRNA-1 to promote tumor growth in vivo. Conclusions: Taken together, our findings suggest that PlncRNA-1 may serve as an oncogene in HCC progression and represent a valuable prognostic marker and potential therapeutic target for HCC.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Hanqing Hong ◽  
Hai Zhu ◽  
Shujun Zhao ◽  
Kaili Wang ◽  
Nan Zhang ◽  
...  

AbstractAs a new class of non-coding RNA, circular RNAs (circRNAs) play crucial roles in the development and progression of various cancers. However, the detailed functions of circRNAs in cervical cancer have seldom been reported. In this study, circRNA sequence was applied to detect the differentially expressed circRNAs between cervical cancer tissues and adjacent normal tissues. The relationships between circCLK3 level with clinicopathological characteristics and prognosis were analyzed. In vitro CCK-8, cell count, cell colony, cell wound healing, transwell migration and invasion, and in vivo tumorigenesis and lung metastasis models were performed to evaluate the functions of circCLK3. The pull-down, RNA immunoprecipitation (RIP), luciferase reporter and rescue assays were employed to clarify the interaction between circCLK3 and miR-320a and the regulation of miR-320a on FoxM1. We found that the level of circCLK3 was remarkably higher in cervical cancer tissues than in adjacent normal tissues, and closely associated with tumor differentiation, FIGO stage and depth of stromal invasion. Down-regulated circCLK3 evidently inhibited cell growth and metastasis of cervical cancer in vitro and in vivo, while up-regulated circCLK3 significantly promoted cell growth and metastasis in vitro and in vivo. The pull-down, luciferase reporter and RIP assays demonstrated that circCLK3 directly bound to and sponge miR-320a. MiR-320a suppressed the expression of FoxM1 through directly binding to 3′UTR of FoxM1 mRNA. In addition, FoxM1 promoted cell proliferation, migration, and invasion of cervical cancer, while miR-320a suppressed cell proliferation, migration, and invasion through suppressing FoxM1, and circCLK3 enhanced cell proliferation, migration and invasion through sponging miR-320a and promoting FoxM1 expression. In summary, circCLK3 may serve as a novel diagnostic biomarker for disease progression and a promising molecular target for early diagnoses and treatments of cervical cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document