scholarly journals Evaluation of Curcumin and Copper Acetate Against Salmonella Typhimurium Infection, Intestinal Permeability, and Cecal Microbiota Composition in Broiler Chickens

2020 ◽  
Author(s):  
Anaisa A. Leyva-Diaz ◽  
Daniel Hernandez-Patlan ◽  
Bruno Solis-Cruz ◽  
Bishnu Adhikari ◽  
Young Min Kwon ◽  
...  

Abstract Background: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of Copper Acetate (CA), Curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens.Results: The obtained results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, p < 0.05) compared to the positive control (PC) group. However, CR and CA-CR were the best treatments reducing S. Typhimurium counts. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (p < 0.05). The effect of dietary treatments in reducing S. Typhimurium colonization was further supported by the Linear discriminant analysis effect size (LEfSe) analysis of microbiome data, where Salmonella was significantly enriched in PC group (LDA score > 2.0 and p<0.05). In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus at CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly abundant respectively.Conclusions: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and intestinal permeability associated with variations in the cecae microbiota structure in broiler chickens.

2020 ◽  
Author(s):  
Anaisa A. Leyva-Diaz ◽  
Daniel Hernandez-Patlan ◽  
Bruno Solis-Cruz ◽  
Bishnu Adhikari ◽  
Young Min Kwon ◽  
...  

Abstract Background: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model, indirect determination of intestinal integrity by measuring fitc-d in serum and microbiota analysis by DNA extraction.Results: The obtained results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P< 0.0001) compared to the positive control (PC) group. However, CR and CA-CR were the most effective treatments in reducing S. Typhimurium counts. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P= 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing S. Typhimurium colonization was further supported by the Linear discriminant analysis effect size (LEfSe) analysis of microbiota data, where Salmonella was significantly enriched in PC group (LDA score > 2.0 and P<0.05). In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly abundant respectively.Conclusions: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.


2020 ◽  
Author(s):  
Anaisa A. Leyva-Diaz ◽  
Daniel Hernandez-Patlan ◽  
Bruno Solis-Cruz ◽  
Bishnu Adhikari ◽  
Young Min Kwon ◽  
...  

Abstract Background: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on day 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene.Results: The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P< 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P= 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P<0.05) compared to the other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively.Conclusions: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anaisa A. Leyva-Diaz ◽  
Daniel Hernandez-Patlan ◽  
Bruno Solis-Cruz ◽  
Bishnu Adhikari ◽  
Young Min Kwon ◽  
...  

Abstract Background Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. Results The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. Conclusions CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.


2020 ◽  
Author(s):  
Anaisa A. Leyva-Diaz ◽  
Daniel Hernandez-Patlan ◽  
Bruno Solis-Cruz ◽  
Bishnu Adhikari ◽  
Young Min Kwon ◽  
...  

Abstract Background: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on day 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene.Results: The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P< 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P= 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P<0.05) compared to the other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively.Conclusions: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1068
Author(s):  
Julia Hankel ◽  
Björn Bodmann ◽  
Matthias Todte ◽  
Eric Galvez ◽  
Till Strowig ◽  
...  

Minimizing the clinical signs of Enterococcus cecorum infections causing enterococcal spondylitis in broiler herds is successful when initiated as metaphylaxis in the first week of life. Mechanistically, either the Enterococcus species present at that time are reduced by antibiotic treatment or antibiotic treatment might induce changes in intestinal microbiota composition with an indirect and subsequent influence. The aim of the present study was to examine the cecal microbiota of chickens after administering lincospectin or different additives to evaluate whether these additives have lincospectin-like effects on microbiota. Therefore, 157,400 broiler chickens were reared in four chicken houses (~40,000 birds each) on a broiler farm with history of enterococcal spondylitis. Each flock was treated either with lincospectin or water soluble esterified butyrins, Bacillus (B.) licheniformis or palm oil was added via drinking water during the first days of life. Ten birds per house were dissected at days 11, 20 and 33 of life and cecal microbiota were analyzed (16S rRNA gene sequencing). Lincospectin treatment elicited significant changes in the cecal microbiota composition until slaughter age. Among the tested additives, effects of B. licheniformis on cecal microbiota composition were most similar to those seen after the treatment with lincospectin at day 11.


2017 ◽  
Vol 19 (77) ◽  
pp. 110-116
Author(s):  
E.O. Myhaylenko ◽  
O.O. Dyomshyna ◽  
L.M. Stepchenko

The article presents data on the study of the impact of feed additives «Humilid» indicators on protein and amino acid metabolism of muscles of broiler chickens cross the COBB 500.The study tested that birds which additived Humilid the water increase in the muscles of total protein, which represented the largest share of the cytosolic and mitochondrial fractions. In homogenate of muscle, the total amount of protein increased by 10% in cytosolic and 20% in mitochondrial, which makes it possible to assert that stimulate the synthesis of cytosolic proteins is influenced Humilid and stimulated the formation chondriome of myocytes. Also, the data indicate an intensification of the use of amino acids for protein biosynthesis and adaptive processes, confirmed by increased in muscle mitochondrial fraction 2 times activity of gamma-glutamyltranspeptidase, which is involved in the transport of amino acids and glutathione in mitochondria that seen as a protective mechanism. The research has shown increased 3 times in cytosolic fraction activity of alanine aminotransferase and the simultaneous decrease in lactate dehydrogenase. Calculate the ratio activity of LDH/ALT showed bias towards anaerobic conversion of glucose to glucose-alanine cycle, more efficient way of recovery and using of glucose.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Caio Abercio da Silva ◽  
Leonardo Aparecido Teixeira Bentin ◽  
Cleandro Pazinato Dias ◽  
Marco Aurélio Callegari ◽  
Vitor Barbosa Facina ◽  
...  

Abstract Background Intestinal health remains a key factor in animal production because it is essential for digestion, absorption and bacterial fermentation. Feed additives have been used to attenuate the weaning stress such as Zinc Oxide (ZnO) and benzoic acid (C7H6O2). The objective of this study was to evaluate the impact of of benzoic acid and probiotics (BA + P) on performance, diarrhea and cecal microbiota of piglets in the nursery phase (23 to 65 days). Results One hundred and sixty weaned piglets with an initial weight of 6.335 ± 0.698 kg and 23 days of age were submitted to four treatments: supplementation with 2500 ppm of Zinc oxide (ZnO), supplementation with a commercial blend of benzoic acid and probiotics (Bacillus licheniformis, Bacillus subtilis and Enterococcus faecium NCIMB 10415; Vevogut P®) (BA + P), supplementation with Zinc oxide plus benzoic acid and probiotics (ZnO + BA + P), and controls receiving only the basal diet without any supplementation. At 65 days of age, 32 piglets (n = 8 per treatment) were slaughtered for the evaluation of the cecal microbiota. Supplementation with ZnO and BA + P were associated with better feed conversion (P < 0.05) in the early stage (23 to 49 days) and with an improvement in all performance parameters over the entire experimental period. The occurrence of diarrhea was lower (P < 0.05) in the BA + P group. The 4 most abundant phyla along with unclassified bacteria represented 93% of all sequences. Firmicutes dominated the cecal microbiota of all groups, followed by Bacteroidetes. Richness represented by the observed number of genera and by the Chao index were statistically lower in ZnO and ZnO + BA + P supplemented animals compared to controls. The beta diversity analysis that compares similarities between bacterial communities demonstrated formation of two distinct clusters containing samples with and without supplementation with ZnO, confirming a strong influence of ZnO on the intestinal microbiota. Conclusion The use of Benzoic acid with probiotics yields similar performance results with lower impact on the gut microbiota compared to ZnO, and it should be considered as a potential alternative in swine production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joana P. Firmino ◽  
Jorge Galindo-Villegas ◽  
Felipe E. Reyes-López ◽  
Enric Gisbert

Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics’ mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anja Baumann ◽  
Anika Nier ◽  
Angélica Hernández-Arriaga ◽  
Annette Brandt ◽  
Maria J. Lorenzo Pisarello ◽  
...  

AbstractToll-like receptors (TLRs) in the liver compartment have repeatedly been attributed to the development of non-alcoholic fatty liver disease (NAFLD). Knowledge on TLR expression in blood cells and their relation to intestinal microbiota and NAFLD development is limited. Here, we determined TLR expression patterns in peripheral blood mononuclear cells (PBMCs) of NAFLD patients and controls, their relation to intestinal microbiota and the impact of TLRs found altered in NAFLD development. Markers of intestinal permeability in blood and TLR mRNA expression in PBMCs were determined in 37 NAFLD patients and 15 age-matched healthy controls. Fecal microbiota composition was evaluated in 21 NAFLD patients and 9 controls using 16S rRNA gene amplicon sequencing. Furthermore, TLR1−/− and C57BL/6 mice (n = 5–6/group) were pair-fed a liquid control or a fat-, fructose- and cholesterol-rich diet. Intestinal microbiota composition and markers of intestinal permeability like zonulin and bacterial endotoxin differed significantly between groups with the latter markers being significantly higher in NAFLD patients. Expression of TLR1-8 and 10 mRNA was detectable in PBMCs; however, only TLR1 expression, being higher in NAFLD patients, were significantly positively correlated with the prevalence of Holdemanella genus while negative correlations were found with Gemmiger and Ruminococcus genera. TLR1−/− mice were significantly protected from the development of diet-induced NAFLD when compared to wild-type mice. While intestinal microbiota composition and permeability differed significantly between NAFLD patients and healthy subjects, in PBMCs, only TLR1 expression differed between groups. Still, targeting these alterations might be a beneficial approach in the treatment of NAFLD in some patients.


2019 ◽  
Vol 98 (1) ◽  
Author(s):  
Meaghan M Meyer ◽  
Krysten A Fries-Craft ◽  
Elizabeth A Bobeck

Abstract Probiotic feed additives with potential to enhance performance, health, and immunity have gained considerable popularity in commercial broiler production. The study objectives were to measure broiler performance, gut integrity, and splenic immune cell profiles in birds fed one of two probiotics at two inclusion levels. Nine hundred sixty Ross 708 broilers (12 per pen) were randomly assigned to no additive control, 0.05% or 0.10% LactoCare (Lactobacillus reuteri), or 0.05% or 0.10% LactoPlan (Lactobacillus plantarum) dietary treatments for 6 wk. On day 27, a 20-pen subset was utilized for a fluorescein isothiocyanate dextran (FITC-d) assay, where half of the pens were subject to a 12-h feed restriction (FR) pregavage. Serum collected from blood drawn 1-h postgavage was analyzed for relative fluorescence of FITC-d absorbed across the intestinal barrier as a gut leakiness indicator. On day 42, spleens from eight birds per treatment were collected for immune cell profile analysis by multicolor flow cytometry. Although performance outcomes were not affected by dietary treatment, FITC-d absorption post-FR was increased 57% in the 0.05% LactoPlan treatment, and was decreased by 12.6% in the 0.05% LactoCare diet, 12% in the 0.10% LactoCare diet, and 22% in the 0.10% LactoPlan diet compared with the control. This indicates a positive impact in barrier integrity maintenance due to 0.05% and 0.10% LactoCare and 0.10% LactoPlan diet following a challenge. Immune cell profiles varied between the two probiotic compositions, with an approximately 50% reduction in splenic innate immune cells (monocyte/macrophage+) in birds fed LactoPlan (P &lt; 0.0001) and greater overall percentages of CD45+ leukocytes and CD3+ T cells in birds fed 0.10% LactoCare (P &lt; 0.0001). LactoPlan diets shifted splenic T-cell populations in favor of CD8α + cytotoxic T cells (TC; P = 0.007), while higher inclusions (0.10%) of either probiotic increased the percentage of activated CD4+ helper T cells (TH; P &lt; 0.0001). These results indicate that compositionally different probiotics had varying effects on the gut permeability and splenic immune cell profiles in broiler chickens, particularly at higher inclusion rates, but observed changes to underlying physiology did not negatively impact performance outcomes. The ability of a probiotic to alter gut permeability and immune cell profile, therefore, may depend on the compositional complexity of the product as well as inclusion rate.


Sign in / Sign up

Export Citation Format

Share Document