scholarly journals Effect of Particle Shape on the Deformation and Stress Reduction of a Gravel Soil Due to Wetting

Author(s):  
Reza Mahinroosta ◽  
Vahid Oshtaghi

Abstract In this paper, the effect of particle shape is investigated on the stress reduction and collapse deformation of gravelly soil using medium-scale direct shear test apparatus under different relative densities, normal stress, and shear stress levels. The Micro-Deval test was used to produce sub-angular particles from angular particles with continuous smoothening of the corners of the particles. Two series of soil specimens were obtained with the same rock type, particle size distribution, and relative density but different particle shapes. In addition to traditional direct shear tests on dry and wet specimens, a specific test procedure was applied to explore the stress reduction and collapse of soil specimens due to wetting. For instance, dry soil specimens under several normal pressure were subjected to shear loading while inundated at several levels of shear stresses. The results showed that the stress reduction and settlement due to wetting increased with vertical and shear stress level in both types of particle shapes, with higher values in angular particle shapes. The wetting of the samples had more impact on the particle breakage in angular gravel than sub-angular gravel, which increased linearly with the normal stress.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Mahinroosta ◽  
Vahid Oshtaghi

AbstractThis paper investigates the effect of particle shape on the stress reduction and collapse deformation of gravelly soil using a medium-scale direct shear test apparatus under different relative densities, normal stress, and shear stress levels. A new method based on the Micro-Deval test was introduced to produce sub-angular particles from angular particles. Therefore, two series of soil specimens were obtained with the same rock origin, particle size distribution, and relative density but different particle shapes. In addition to traditional direct shear tests on dry and wet specimens, a specific test procedure was applied to explore the stress reduction and collapse of soil specimens due to wetting. The results of the tests, including shear stress–shear displacement and vertical displacement-shear displacement, were compared. The results showed that the stress reduction and settlement due to wetting increased with vertical and shear stress levels in both types of particle shapes, with higher values in angular particle shapes. The particle breakage of the soil specimens was also studied quantitatively using the change in the particle size distribution before and after the test. It was shown that the wetting of the samples had more impact on the particle breakage in angular gravel than sub-angular gravel, which increased linearly with the normal stress.


2018 ◽  
Vol 5 (5) ◽  
pp. 172076 ◽  
Author(s):  
Yao Li ◽  
Yunming Yang

This study aims to investigate the effect of consolidation shear stress magnitude on the shear behaviour and non-coaxiality of soils. In previous drained bi-directional simple shear test on Leighton Buzzard sand, it is showed that the level of non-coaxiality, which is indicated by the angle difference between the principal axes of stresses and the corresponding principal axes of strain rate tensors, is increased by increasing angle difference between the direction of consolidation shear stress and secondary shearing. This paper further investigated the relation and includes results with higher consolidation shear stresses. Results agree with the previous relation, and further showed that increasing consolidation shear stresses decreased the level of non-coaxiality in tests with angle difference between 0° and 90°, and increased the level of non-coaxiality in tests with angle difference between 90° and 180°.


1979 ◽  
Vol 23 (89) ◽  
pp. 157-170 ◽  
Author(s):  
W. F. Budd ◽  
P. L. Keage ◽  
N. A. Blundy

AbstractAn experimental programme has been carried out for studying temperate-ice sliding over rock surfaces with a wide range of roughnesses, for normal and shear stresses comparable to those expected under real ice masses. The limiting static shear stress for acceleration has been found to be directly proportional to the normal load giving a constant limiting coefficient of static friction characteristic of the surface. For a constant applied normal stress N and shear stress τb, well below the limiting static shear, a steady velocity Vb results which increases approximately proportionally to τb and decreases with increasing N and the roughness of the surface. For high normal stress the velocity becomes approximately proportional to the shear stress cubed and inversely proportional to the normal stress. As the shear stress increases acceleration sets in, which, for different roughness and normal loads, tends to occur for a constant value of the product τbVb. For some surfaces at high normal loads this acceleration was retarded by erosion. For constant-applied-velocity tests a steady shear stress resulted, which tended to become constant with high velocities, and which increased with increasing normal stress but with a reduced coefficient of sliding friction. The relevance of the results to the sliding of real ice masses is discussed with particular reference to the importance of the effect of the relative normal stress, above basal water pressure, to the sliding rate.


Author(s):  
Luis F. Puente Medellín ◽  
Antonio Balvantin ◽  
J. A. Diosdado-De la Peña

This paper presents a numerical study of different geometries of cruciform specimens for biaxial tensile tests. The aim of these specimens is to be used on fixtures for biaxial tests mounted in universal testing machines. For the study, a model of isotropic material for steel sheet metal specimens was considered. Thus, only the mechanical properties of the sheet metal in the rolling direction were considered in the simulations. In this numerical analysis, the normal stress distribution and the consequent shear stress were studied. Additionally, the effect of the inclusion of multiple slots as well as a thickness reduction on the normal and shear stresses were assessed. Hence, a specimen in which a uniform normal stress distribution with zero shear stress, is necessary. The results of the analysis show that a specimen with features, multiple slots and a thickness reduction in the central area, provides a better performance in the simulations than dismissing any of these characteristics. Finally, a specimen model suitable for the mentioned test is proposed according to the obtained numerical results and the feasibility of manufacture of the experimental sample-test.


1967 ◽  
Vol 30 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Ian S. Gartshore

The equations of mean motion indicate that two-dimensional turbulent wakes, when subjected to appropriately tailored adverse pressure gradients, can be self-preserving. An experimental examination of two nearly self-preserving wakes is reported here. Mean velocity, longitudinal and lateral turbulence intensity, inter-mittency and shear stress distributions have been measured and are compared with Townsend's data from the small-deficit undistorted wake. In comparison with the undistorted case, the present wakes have slightly lower turbulent intensities and significantly lower shear stresses, all quantities being non-dimensionalized by a local velocity scale taken as the maximum mean velocity deficit. A consideration of the reasons for the shear stress reduction leads to an expression from which the shear stresses in any symmetrical free equilibrium shear flow can be found. This relationship is used to calculate the rate of growth in the measured wakes, with reasonable success.


2011 ◽  
Vol 90-93 ◽  
pp. 230-233
Author(s):  
Hong Chun Xia ◽  
Guo Qing Zhou ◽  
Ze Chao Du

The direct shear mechanical characteristics of gravel, sand and steel particle were studied systematically using DRS-1 high normal stress direct and residual shear apparatus. The results show that the shear mechanical characteristics of gravel, sand and steel particle is different under different normal stress condition. For steel particle, the curves of shear stress-shear displacement present strain softening regardless of the magnitude of normal stress, and the shear displacement corresponding to the peak shear stress increases with the normal stress. Under low normal stress condition, the volume of fine gravel and steel particle expand, but the fine sand contracts at the beginning of direct shear and then contracts. Under high normal stress condition, the volume of steel particle contracts at the beginning of the direct shear and then contracts, but the fine sand and fine gravel contract throughout the direct shear. The particle breakage has significant effect on the shear strength of fine sand and fine gravel. Under the same high normal stress condition, the volume of fine gravel is greater than that of fine sand, which indicates that the fine gravel is easier to be crushed than the fine sand.


1975 ◽  
Vol 19 (03) ◽  
pp. 155-163
Author(s):  
M. A. Shama

A brief note is given on various components of the longitudinal vertical shearing force. The stillwater component is examined with particular emphasis on the effect of local cargo loading and the mechanism of shear load transmission. The main factors affecting the wave-induced and dynamic components are indicated and an approximate method is given for estimating the impulsive dynamic component. A method is then given for calculating the shear stress distribution over a typical section of a bulk carrier. The ship section is idealized by a simplified structural model comprising closed and open cells. The structural model retains all the geometrical properties of the original section. Two numerical examples are considered to examine the effect of ship section parameters on shear stress distribution. It is shown that:(i) High shear stresses may be developed in the side shell plating.(ii) The variation of ship section parameters has a negligible effect on the maximum shear stress and may have a significant local effect.(iii) The shear carrying capacity of a given ship section could be easily estimated. Alternatively, for a given shearing force, a "shear coefficient," representing shear capability, could be estimated.


2011 ◽  
Vol 243-249 ◽  
pp. 2332-2337 ◽  
Author(s):  
Hong Chun Xia ◽  
Guo Qing Zhou ◽  
Ze Chao Du

The direct shear mechanical characteristics of soil-structure interface under different experimental condition were studied systematically using the DRS-1 high normal stress direct and residual shear apparatus. The results show that the normal stress is an important factor which determines the mechanical characteristics of soil-structure interface. The curve of shear stress-shear displacement presents strain softening when the normal stress<3MPa, linear hardening when =3~5MPa and strain hardening when12MPa, separately. At the same time, the volume of the soil expands when <3MPa and contracts when >3MPa. But the volume of the soil expands and contracts simultaneously during the process of direct shear when =3MPa.The roughness of the interface influences not only the shape of the shear stress-shear displacement curve but also the shear strength of the interface. Under same normal stress condition,the shear strength of interface increases with the roughness but the influence degree of interface roughness reduces gradually with the increase of normal stress. The grain breakage degree is different under different normal stress. It increases evidently with the increase of normal stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jianhang Chen ◽  
Fan Zhang ◽  
Hongbao Zhao ◽  
Junwen Zhang

Cement grout is widely used in civil engineering and mining engineering. The shear behaviour of the cement grout plays an important role in determining the stability of the systems. To better understand the shear behaviour of the cement grout, numerical direct shear tests were conducted. Cylindrical cement grout samples with two different strengths were created and simulated. The numerical results were compared and validated with experimental results. It was found that, in the direct shear process, although the applied normal stress was constant, the normal stress on the contacted shear failure plane was variable. Before the shear strength point, the normal stress increased slightly. Then, it decreased gradually. Moreover, there was a nonuniform distribution of the normal stress on the contacted shear failure plane. This nonuniform distribution was more apparent when the shear displacement reached the shear strength point. Additionally, there was a shear stress distribution on the contacted shear failure plane. However, at the beginning of the direct shear test, the relative difference of the shear stresses was quite small. In this stage, the shear stress distribution can be assumed uniform on the contacted shear failure plane. However, once the shear displacement increased to around the shear strength point, the relative difference of the shear stresses was obvious. In this stage, there was an apparent nonuniform shear stress distribution on the contacted shear failure plane.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 122
Author(s):  
Cheng Cheng ◽  
Xiao Li ◽  
Nengxiong Xu ◽  
Bo Zheng

Dilation behavior is of great importance for reasonable modeling of the stability of the host rock of the repository for high-level radioactive waste disposal. It is a suitable method for carrying out direct shear experiments to analyze the dilation behavior of rock with well understood physical meanings. Based on a series of direct shear experiments on granite samples from the Alxa candidate area under different normal stresses, the shear stress‒shear strain and shear stress‒normal strain relations have been studied in detail. Five typical stages have been divided associated with the fracturing process and deformation behaviors of the granite samples during the experimental process, and the method to determine the typical stress thresholds has been proposed. It has also been found that the increasing normal stress may reduce the maximum dilation angle, and when the normal stress is relatively lower, the negative dilation angle may occur during the post-peak stage. According to the data collected from the direct shear tests, an empirical model of the mobilized dilation angle dependent on normal stress and plastic shear strain is proposed. This mobilized dilation angle has clear physical meanings and can be used in plastic constitutive models of the host rock of the repository, and this analysis can also be put forward to other types of geomechanical problems, including the deformation behaviors related to landslide, earthquake, and so on.


Sign in / Sign up

Export Citation Format

Share Document