scholarly journals Aging-related tumor associated fibroblasts changes could worsen the prognosis of GBM patients

2020 ◽  
Author(s):  
Hongwang Song ◽  
Xiaojun Fu ◽  
Chenxing Wu ◽  
Shouwei Li

Abstract Background: Glioblastoma multiforme (GBM) is the most malignant tumor in human brain, with highly heterogeneity among different patients. Age could function as an incidence and prognosis risk factor for many tumors.Method: A series of bioinformatic experiments were conducted to evaluate the differences of incidence, differential expressed genes, enriched pathways with the data from Surveillance, Epidemiology, and End Results (SEER) program, the cancer genome atlas (TCGA) and Chinese glioma genome atlas (CGGA) project.Results: We discovered in our present study that distinct difference of incidence and prognosis of different aged GBM patients. By a series of bioinformatic method, we found that the tumor associated fibroblasts (TAFs) was the most crucial tumor microenvironment (TME) component that led to this phenomenon. Epithelial-mesenchymal transition (EMT) could be the mechanism by which TAFs regulate the progression of GBM. Conclusion: We have proposed a close correlation between age and GBM incidence and prognosis, and propose the underlying mechanism behind this correlation by mining different databases, which laid the foundation for future research.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hongwang Song ◽  
Xiaojun Fu ◽  
Chenxing Wu ◽  
Shouwei Li

Abstract Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain, with highly heterogeneity among different patients. Age could function as an incidence and prognosis risk factor for many tumors. Method A series of bioinformatic experiments were conducted to evaluate the differences of incidence, differential expressed genes, enriched pathways with the data from Surveillance, Epidemiology, and End Results (SEER) program, the cancer genome atlas (TCGA) and Chinese glioma genome atlas (CGGA) project. Results We discovered in our present study that distinct difference of incidence and prognosis of different aged GBM patients. By a series of bioinformatic method, we found that the tumor associated fibroblasts (TAFs) was the most crucial tumor microenvironment (TME) component that led to this phenomenon. Epithelial-mesenchymal transition (EMT) could be the mechanism by which TAFs regulate the progression of GBM. Conclusion We have proposed a close correlation between age and GBM incidence and prognosis, and propose the underlying mechanism behind this correlation by mining different databases, which laid the foundation for future research.


2020 ◽  
Author(s):  
Hongwang Song ◽  
Xiaojun Fu ◽  
Chenxing Wu ◽  
Shouwei Li

Abstract Background: Glioblastoma multiforme (GBM) is the most malignant tumor in human brain, with highly heterogeneity among different patients. Age could function as an incidence and prognosis risk factor for many tumors.Method: A series of bioinformatic experiments were conducted to evaluate the differences of incidence, differential expressed genes, enriched pathways with the data from Surveillance, Epidemiology, and End Results (SEER) program, the cancer genome atlas (TCGA) and Chinese glioma genome atlas (CGGA) project.Results: We discovered in our present study that distinct difference of incidence and prognosis of different aged GBM patients. By a series of bioinformatic method, we found that the tumor associated fibroblasts (TAFs) was the most crucial tumor microenvironment (TME) component that led to this phenomenon. Epithelial-mesenchymal transition (EMT) could be the mechanism by which TAFs regulate the progression of GBM. Conclusion: We have proposed a close correlation between age and GBM incidence and prognosis, and propose the underlying mechanism behind this correlation by mining different databases, which laid the foundation for future research.


2020 ◽  
Author(s):  
Hongwang Song ◽  
Xiaojun Fu ◽  
Chenxing Wu ◽  
Shouwei Li

Abstract Background: Glioblastoma multiforme (GBM) is the most malignant tumor in human brain, with highly heterogeneity among different patients. Age could function as an incidence and prognosis risk factor for many tumors.Method: A series of bioinformatic experiments were conducted to evaluate the differences of incidence, differential expressed genes, enriched pathways with the data from Surveillance, Epidemiology, and End Results (SEER) program, the cancer genome atlas (TCGA) and Chinese glioma genome atlas (CGGA) project.Results: We discovered in our present study that distinct difference of incidence and prognosis of different aged GBM patients. By a series of bioinformatic method, we found that the tumor associated fibroblasts (TAFs) was the most crucial tumor microenvironment (TME) component that led to this phenomenon. Epithelial-mesenchymal transition (EMT) could be the mechanism by which TAFs regulate the progression of GBM. Conclusion: We have proposed a close correlation between age and GBM incidence and prognosis, and propose the underlying mechanism behind this correlation by mining different databases, which laid the foundation for future research.


2020 ◽  
Author(s):  
Qing Zhang ◽  
Chen Zhu ◽  
Gefei Guan ◽  
Shuai Shen ◽  
Yunhe Han ◽  
...  

Abstract Background: Glioma is the most prevalent and malignant primary central nervous system tumor in adults. As a member of the integrin alpha chain family of proteins, integrin subunit alpha 3 (ITGA3) has been found to play a critical role in the occurrence and progression of several cancers, including lung, ovarian, and pancreatic cancers. However, the role of ITGA3 in glioma remains unclear.Methods: The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), REMBRANDT, GSE16011, GSE59612, and GSE4290 datasets were used to analyze relevant characteristics of ITGA3 in glioma. R language and GraphPad Prism 7.00 were employed as major tools for statistical analysis and graph manipulation.Results: We identified that ITGA3 expression was upregulated in glioma and related to unfavorable outcomes of glioma patients. Expression of ITGA3 also tended to be enriched in aggressive subtypes of glioma. We demonstrated that expression of ITGA3 was negatively correlated with glioma purity. In gliomas with high ITGA3 expression, the anti-glioma immune response was inhibited. ITGA3 also regulated angiogenesis within the glioma microenvironment and promoted the epithelial–mesenchymal transition (EMT) and autophagy of glioma cells. GSEA analysis revealed that ITGA3 could activate ERK1/2 and PI3K/AKT/mTOR pathways.Conclusion: Our data suggested that ITGA3 promoted the malignant progression of glioma by regulating the immunity of glioma as well as the EMT and autophagy of glioma cells, which could act as a therapeutic target for glioma.


2021 ◽  
Vol 23 (1) ◽  
pp. 325
Author(s):  
Yu-Ting Yen ◽  
Jou-Chun Yang ◽  
Jiun-Bo Chang ◽  
Shih-Chang Tsai

MicroRNAs (miRNAs), as key negative regulators of gene expression, are closely related to tumor occurrence and progression. miR-194-5p (miR-194-1) has been shown to play a regulatory role in various cancers however, its biological function and mechanism of action in breast cancer have not yet been well explored. In this study, we use the UALCAN and LinkedOmics databases to analyze transcription expression in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA). The epithelial-mesenchymal transition status of breast cancer cells was evaluated by wound-healing assay, trans-well assays, and gelatin zymography, while protein expression was assessed by Western blotting. miR-194-5p expression was found to be up-regulated in breast cancer clinical specimens but down-regulated in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 and breast cancer clinical specimens in The Cancer Genome Atlas (TCGA). miR-194-5p significantly inhibited the expression of the epithelial marker ZO-1 and increased the expression of mesenchymal markers, including ZEB-1 and vimentin, in MDA-MB-231 cells. miR-194-5p significantly reduced the gelatin-degrading activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in zymography assays. In MDA-MB-231 cells and TCGA patient samples, ZEB-1 expression was significantly inversely correlated with miR-194-5p expression. High levels of miR-194-5p were associated with good overall survival. miR-194-5p regulates epithelial–mesenchymal transition (EMT) in TNBC. Our findings suggest that miR-194-5p functions as a tumor biomarker in breast cancer, providing new insights for the study of breast cancer development and metastasis.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 339
Author(s):  
Yu-Ling Tsai ◽  
Hsin-Han Chang ◽  
Ying-Chuan Chen ◽  
Yu-Chan Chang ◽  
Ying Chen ◽  
...  

The activation of the Notch pathway induces glioblastoma (GBM) development. Since KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2) is involved in the Notch pathway, the detailed mechanism is still undetermined. The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases revealed that KDELC2 mRNA was associated with oncologic factors of GBM. U87, LN229, LNZ308, U118MG, and GBM8401 cells showed higher KDELC2 expression than normal brain tissues. The results of MTT, wound healing, and invasion assays proved that KDELC2 knockdown suppressed GBM-aggressive behaviors. The inhibitory properties of GBM stemness and angiogenesis under KDELC2 knockdown were evaluated by tumor spheroid and tube formation assays. Suppression of KDELC2 downregulated Notch factors’ expressions, including KDELC1, pofut1, Notch receptors 1–3, and HES-1. Immunoblot assay showed that KDELC2 knockdown promoted tumor apoptosis by downregulating PI3k/mTOR/Akt, MAPK/ERK, and NF-kB pathways. The combination of KDELC2 knockdown and temozolomide (TMZ) treatment had an optimal therapeutic effect by suppressing MGMT expression. Results of an orthotopic xenograft animal model and human tissue confirmed that KDELC2 correlated with glioma proliferation, advanced grades, and poor prognosis. Therefore, KDELC2 might be a potential pharmacological target to inhibit tumorigenesis, epithelial–mesenchymal transition, angiogenesis, and chemo-resistance of GBM.


Epigenomics ◽  
2020 ◽  
Author(s):  
Qijie Zhao ◽  
Jinan Guo ◽  
Yueshui Zhao ◽  
Jing Shen ◽  
Parham Jabbarzadeh Kaboli ◽  
...  

Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/ PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.


2021 ◽  
Author(s):  
Wancheng Zhao ◽  
Lili Yin

Abstract Background: Hypoxia-related genes have been reported to play important roles in a variety of cancers. However, their roles in ovarian cancer (OC) have remained unknown. The aim of our research was to explore the significance of hypoxia-related genes in OC patients.Methods: In this study, 15 hypoxia-related genes were screened from The Cancer Genome Atlas (TCGA) database to group the ovarian cancer patients using the consensus clustering method. Principal component analysis (PCA) was performed to calculate the hypoxia score for each patient to quantify the hypoxic status. Results: The OC patients from TCGA-OV dataset were divided into two distinct hypoxia statuses (cluster.A and cluster.B) based on the expression level of the 15 hypoxia-related genes. Most hypoxia-related genes were expressed more highly in the cluster.A group than in the cluster.B group. We also found that patients in the cluster.A group exhibited higher expression of immune checkpoint-related genes, epithelial-mesenchymal transition-related genes, and immune activation-related genes, as well as elevated immune infiltrates. PCA algorithm indicated that patients in the cluster.A group had higher hypoxia scores than that in in the cluster.B group.Conclusions: In summary, our research elucidated the vital role of hypoxia-related genes in immune infiltrates of OC. Our investigation of hypoxic status may be able to improve the efficacy of immunotherapy for OC.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2734
Author(s):  
Keita Kanki ◽  
Ryota Watanabe ◽  
Le Nguyen Thai ◽  
Chun-Hao Zhao ◽  
Kyoko Naito

Aberrant activation of histone deacetylases (HDACs) is one of the causes of tumor cell transformation in many types of cancer, however, the critical HDAC responsible for the malignant transformation remain unclear. To identify the HDAC related to the dedifferentiation of hepatocellular carcinoma (HCC) cells, we investigated the expression profile of HDACs in differentiated and undifferentiated hepatoma cells. We found that HDAC9, a member of the class II HDAC, is preferentially expressed in undifferentiated HCC cells. Analysis of 373 HCC patients in The Cancer Genome Atlas (TCGA) database revealed that the expression of HDAC9 mRNA positively correlated with the markers of mesenchymal phenotype and stemness, and conversely, negatively correlated with hepatic differentiation markers. HDAC9 was transcriptionally upregulated in epithelial–mesenchymal transition (EMT)-induced HCC cells treated with TGF-β. Genetic and pharmacological inhibition of HDAC9 in undifferentiated HCC cells showed decreased sphere-forming activity, which indicates an ability of anchorage-independent cell growth and self-renewal. We also showed that aldehyde dehydrogenase 1A3 (ALDH1A3) was downregulated in HDAC9-suppressing cells, and ALDH inhibitor disulfiram significantly decreased the sphere formation of undifferentiated HCC cells. Together, our data provide useful information for the development of HDAC9-specific inhibitors for the treatment of HCC progression.


Sign in / Sign up

Export Citation Format

Share Document