scholarly journals Multimodal Freezing System for Cryogenic 3D Printing

Author(s):  
Pushkar Prakash Kamble ◽  
Subodh Chavan ◽  
Rajendra Hodgir ◽  
Gopal Gote ◽  
K P Karunakaran ◽  
...  

Abstract Cryogenic 3D Printing (Cryo-3DP) creates 3D objects by deposition-then-freezing of aqueous solutions of various materials layer-by-layer. The process generally takes place at the temperature ranging from -20 °C to -25°C. At the beginning of the process, cryo-3DP demands a high cooling rate to reduce the work envelope’s temperature rapidly. After the work envelope reaches the working temperature (-20 to -25°C), lower cooling rates are enough. The proposed multimodal freezing system uses two modes of cooling. Rapid injection of the CO2 gas in the chamber is suitable for achieving high cooling rates (0.5 °Cs-1) initially and Vapor Compression Refrigeration (VCR) for sustained heat removal from the system (0.5 °Cmin-1). The results show that the proposed multimodal system performs faster than the conventional system.

Author(s):  
Judah Balli ◽  
Subha Kumpaty ◽  
Vince Anewenter

The purpose of this paper is to understand and research literature on the “continuous liquid interface production (CLIP)” of 3D objects to address the current challenges. This proprietary technology was originally owned by EiPi Systems but is now being developed by Carbon 3D. Unlike conventional rapid prototyping of printing layer-by-layer to print 3D objects, CLIP is achieved with an oxygen-permeable window made of proprietary glass membrane and the ultraviolet image projection plane below it, which allows the continuous liquid interface to produce 3D objects where photo-polymerization is restricted between the window and the polymerizing part. This process eliminates the time requirement in between the layers resulting in the faster production of 3D objects with a resolution less than 100 microns. It is a known factor that the “supports” play a vital role in any liquid based 3D printing techniques and this does not change in CLIP. In addition to the parameters of support structure like shape, size, strength, ease of removability, surface finish after removal of supports etc, CLIP needs to deal with different types of materials. The support structure needs to be designed according to the respective material’s properties. There are two broad categories of the materials available from Carbon 3D, prototyping resins, and engineering resins. While the prototyping resin is used for the cosmetic models and the engineering resins are used for the practical applications. There are 6 types of engineering resins developed for the end user; of these, EPU and CE are more challenging to work with. EPU parts needs more supports and careful handling till the completion of post processing as the material is soft. CE parts are fragile and needs more systematic handling to complete the successful production. Although printing parts of EPU and CE is more time consuming when compared to the normal CLIP process, they are worth for their unmatched industrial applications. None of the existing 3D printing technologies offers this quality. The support structure, orientation and pot life are the influencing parameters for all resins. In this study, it is statistically proven that by optimizing the part orientation with respect to the slicing of each layer and customized supports; parts are built way better than before. The part orientation is optimized by ensuring each layer is supporting the subsequent layer and minimizing the islands. It is noticed that the results are always better by tilting the part 5 to 10 degrees in both X and Y axis in the build setup and this applies for most of the straight geometrical parts. For parts of specific geometry which can create a vacuum while pulling up the part needs to be oriented in a different way or create a re-closable air passage that can prevent the vacuum being created.


Author(s):  
A. P. Tsoy ◽  
A. S. Granovskiy ◽  
R. A. Jamasheva

To reduce the condensation pressure of the refrigerant in the summer, refrigeration system has been developed, in which, during periods of high air temperature, the heat of condensation is removed to the coolant, which was pre-cooled at night due to radiative cooling. A methodology has been developed for determining the main characteristics of the elements of the proposed system and calculating its daily energy consumption. The calculation shows that the proposed system with a nominal refrigerating capacity of 10 kW, using the R404a refrigerant, allows in the climate of the city of Shymkent to reduce the condensation temperature to +32.9°C, and daily energy consumption by 6.5% compared to an ordinary vapor compression refrigeration machine.


Author(s):  
F. Pixner ◽  
R. Buzolin ◽  
S. Schönfelder ◽  
D. Theuermann ◽  
F. Warchomicka ◽  
...  

AbstractThe complex thermal cycles and temperature distributions observed in additive manufacturing (AM) are of particular interest as these define the microstructure and the associated properties of the part being built. Due to the intrinsic, layer-by-layer material stacking performed, contact methods to measure temperature are not suitable, and contactless methods need to be considered. Contactless infrared irradiation techniques were applied by carrying out thermal imaging and point measurement methods using pyrometers to determine the spatial and temporal temperature distribution in wire-based electron beam AM. Due to the vacuum, additional challenges such as element evaporation must be overcome and additional shielding measures were taken to avoid interference with the contactless techniques. The emissivities were calibrated by thermocouple readings and geometric boundary conditions. Thermal cycles and temperature profiles were recorded during deposition; the temperature gradients are described and the associated temperature transients are derived. In the temperature range of the α+β field, the cooling rates fall within the range of 180 to 350 °C/s, and the microstructural characterisation indicates an associated expected transformation of β→α'+α with corresponding cooling rates. Fine acicular α and α’ formed and local misorientation was observed within α as a result of the temperature gradient and the formation of the α’.


2021 ◽  
Vol 26 (2) ◽  
pp. 47
Author(s):  
Julien Eustache ◽  
Antony Plait ◽  
Frédéric Dubas ◽  
Raynal Glises

Compared to conventional vapor-compression refrigeration systems, magnetic refrigeration is a promising and potential alternative technology. The magnetocaloric effect (MCE) is used to produce heat and cold sources through a magnetocaloric material (MCM). The material is submitted to a magnetic field with active magnetic regenerative refrigeration (AMRR) cycles. Initially, this effect was widely used for cryogenic applications to achieve very low temperatures. However, this technology must be improved to replace vapor-compression devices operating around room temperature. Therefore, over the last 30 years, a lot of studies have been done to obtain more efficient devices. Thus, the modeling is a crucial step to perform a preliminary study and optimization. In this paper, after a large introduction on MCE research, a state-of-the-art of multi-physics modeling on the AMRR cycle modeling is made. To end this paper, a suggestion of innovative and advanced modeling solutions to study magnetocaloric regenerator is described.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maryna Gorlachova ◽  
Boris Mahltig

AbstractThe actual paper is related to adhesive properties of 3D objects printed on cotton textile fabrics. For practical applications of 3D prints in the textile sector, the adhesion of the printed object on the textile substrate is an important issue. In the current study, two different types of polymers are printed on cotton – polylactide acid (PLA) and polyamide 6.6 (Nylon). Altogether six cotton fabrics differing in structure, weight and thickness are evaluated. Also, the effect of washing and enzymatic desizing is investigated. For printing parameters, best results are gained for elevated process temperatures, intermediate printing speed and low Z-distance between printing head and substrate. Also, a textile treatment by washing and desizing can improve the adhesion of an afterwards applied 3D print. The presented results are quite useful for future developments of 3D printing applications on textile substrates, e.g. to implement new decorative features or protective functions.


Sign in / Sign up

Export Citation Format

Share Document