Strain Energy Dissipation and Damage Evolution of Frozen Migmatite Under Triaxial Unloading

2019 ◽  
Vol 37 (4) ◽  
pp. 3183-3192 ◽  
Author(s):  
Yuan Chang ◽  
Zhonghui Chen ◽  
Fuqiang Ren ◽  
Laishan Chang
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Pu Yuan ◽  
Ning-Ning Wei ◽  
Qin-Yong Ma

To evaluate the effect of nonparallel end face of rocklike specimens in SHPB tests, the characteristics of energy dissipation are analyzed based on numerical simulations for end-face nonparallelism from 0% to 0.40% and Young’s modulus from 14 GPa to 42 GPa. With the increment of end-face nonparallelism, both energy consumption density and dissipated energy density show a slight increase trend, while releasable elastic strain energy density presents a slight decrease trend. Existence of elastic unloading in the damaged rocklike specimen leads to a reduction of energy consumption density and a constant dissipated energy density during total strain shrinkage. At peak dynamic stress, dissipated energy density presents a linear upward trend with the increment of end-face nonparallelism and Young’s modulus, while releasable elastic strain energy density shows an inverse trend. A binary linear regression equation is deduced to estimate the energy dissipation ratio. Mechanical damage evolution of the rocklike specimen is divided into two regions in line with the two regions in dynamic stress-strain curves, and the transition between the slow-growth region and rapid-growth region is shifted to the right with the increment of end-face nonparallelism. Due to the presence of nonparallel end face, fluctuation presents in energy density evolution and mechanical damage evolution. The fluctuation is enhanced with the increment of end-face nonparallelism and weakened with the increase of Young’s modulus. Based on energy density evolution and mechanical damage evolution analyses, the maximum end-face nonparallelism should be controlled within 0.20%, twice the value in ISRM suggested methods, which reduces the cost and time for processing rocklike specimens.


1998 ◽  
Vol 4 (4) ◽  
pp. 280-282
Author(s):  
Petras Baradokas

The paper discusses the problem of evaluating vibration energy dissipation of a composite material. It is suggested to express the dissipation cofficient in a line (2). The reduced component dissipation coefficients c i φi are the members of the line. The ratio of reduction c i , shows the proportion by which a separate component adds to the energy dissipation of the entire composition. By analysing the accumulated and dissipated strain energy of a composite material were obtained (6). On the basis of these expressions, formulas for calculating the dissipation coefficients of a three-layer bar and that with a galvanic covering were devised. The analysis made leads to the following conclusions: - the vibration energy dissipation coefficient of a composite material is equal to the sum of the reduced dissipation coefficients of the composition component materials; - the ratio of reduction c i depends on the value of the component accumulated energy; - for comparing separate components as to the energy dissipation, the product φ i E i should be used.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881990 ◽  
Author(s):  
Hui-Yong Guo ◽  
He-Fa Yuan ◽  
Qi Huang

It is difficult for the traditional methods to identify uncertain damage problems caused by noise. Therefore, a gray cloud rule generator algorithm based on cloud model and modal strain energy is presented to solve the problems. Cloud model can simulate both randomness and fuzziness with fixed parameters. Therefore, it is applicable for the uncertain damage problems. First, modal strain energy and modal strain energy dissipation ratio index are introduced. Then, numerical characteristics of a cloud model are described and some cloud generators are analyzed. Finally, a gray cloud rule is proposed and the gray cloud rule generator algorithm based on the gray cloud rule generator and modal strain energy is developed. The interference of uncertain noise is reduced through a large number of cloud droplets. A two-dimensional truss structure model has been used to verify the effectiveness of the algorithm. The results indicate that the proposed gray cloud rule generator algorithm is applicable to identify the uncertain damage caused by noise, and the identification results of the proposed method are relatively better than those of modal strain energy dissipation ratio index.


2008 ◽  
Vol 33-37 ◽  
pp. 663-668
Author(s):  
Quan Sheng Liu ◽  
Bin Liu ◽  
Wei Gao

This paper introduces the principle of minimum energy dissipation and its general procedures to establish development equation of internal variable. With the accepted viewpoint that the damage is only mechanics of energy dissipation during the rockburst and utilizing the total strength criterion based on released strain energy, the general damage evolution equation is deduced. Compared with the traditional research method of damage evolution equation, this method has universal and objective characteristics.


2014 ◽  
Vol 14 (07) ◽  
pp. 1450028 ◽  
Author(s):  
Hui Yong Guo ◽  
Zheng Liang Li

In order to solve structural multi-damage identification problems, a damage detection method based on modal strain energy equivalence index (MSEEI) is presented. First, an accurate expression of modal strain energy (MSE) before and after damage occurs is given. Then, according to the energy equivalence theory that the change in MSE caused by the damage should be equivalent to the energy dissipation caused by the same damage, an energy equivalence equation is deduced. Finally, four roots of the energy equivalence equation are found and a MSEEI is obtained from the four roots. Simulation results demonstrate that the proposed MSEEI method can identify structural damage locations and extent with good accuracy. Identification precision of the proposed method is clearly better than that of the modal strain energy dissipation ratio index (MSEDRI) method.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Shuren Wang ◽  
Paul Hagan ◽  
Yanhai Zhao ◽  
Xu Chang ◽  
Ki-Il Song ◽  
...  

To investigate the mechanical properties and energy evolution characteristics of sandstone depending on the water contents and confining pressure, the uniaxial and triaxial tests were conducted. The test results show that the strain energy was stored in the sandstone samples at the prepeak stage, and that is suddenly released when the failure occurred, and energy dissipation is sharply increased at the postpeak stage. The damage and energy dissipation characteristics of the samples are observed clearly under the stepwise loading and unloading process. The critical strain energy and energy dissipation show a clear exponential relationship. The critical elastic energy decreases linearly as the water content increases. As the confining pressure increases, the critical elastic energy of the samples transforms from linear to exponential. The concept of energy enhancement factor is proposed to characterize the strengthening effect induced by the confining pressure on the energy storage capacity of the rock samples. The energy evolution of the sandstone samples is more sensitive to the confining pressure than that of the water content.


Author(s):  
Casey M. Holycross ◽  
John N. Wertz ◽  
Todd Letcher ◽  
M.-H. Herman Shen ◽  
Onome E. Scott-Emuakpor ◽  
...  

An energy-based method used to predict fatigue life and critical life of various materials has been previously developed, correlating strain energy dissipated during monotonic fracture to total cyclic strain energy dissipation in fatigue fracture. This method is based on the assumption that the monotonic strain energy and total hysteretic strain energy to fracture is equivalent. The fracture processes of monotonic and cyclic failure modes can be of stark contrast, with ductile and brittle fracture dominating each respectively. This study proposes that a more appropriate damage parameter for predicting fatigue life may be to use low cycle fatigue (LCF) strain energy rather than monotonic energy. Thus, the new damage parameter would capture similar fracture processes and cyclic behavior. Round tensile specimens machined from commercially supplied Al 6061-T6511 were tested to acquire LCF failure data in fully reversed loading at various alternating stresses. Results are compared to both monotonic and cyclic strain energy dissipation to determine if LCF strain energy dissipation is a more suitable damage parameter for fatigue life prediction.


2021 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xinyue Li ◽  
Yishan Pan

Abstract The slippage initiation and induced instability of roadway surrounding rock are highly likely to cause dynamic disasters, severely influencing the safety production of mining. With the optical-mechanical monitoring test of the deformation localization of energy dissipation, this study established the optical index of coal deformation equilibrium degree under load, and obtained the evolution law of coal deformation equilibrium degree. After analyzing the relationship between tensile-sliding effect and mechanical behavior of coal deformation field, it proposed the strain energy ratio coefficient. The results indicate that the strength reduction of coal body is affected by the deformation accumulation of loading displacement field. The sliding displacement of the stable sliding type specimen occurs 5.5s earlier than tensile displacement,which is 4.4s longer than the instantaneous instability type specimen. The instability type of coal is closely related to the tangent angle of the strain energy ratio coefficient and the damage persistence characteristics. The damage accumulation of stable equal amplitude contributes to the stable failure, and the damage accumulation of interval equal amplitude influences the instantaneous instability development. The fracture expansion stage is the main stage of energy consumption damage accumulation. That is, the main energy consumption damage accumulation stage of the stable slip coal is the stable crack expansion stage, with the damage proportion of 35.89%, while the damage proportion of instantaneous instability coal in the unsteady crack expansion stage is 84.226%. The study provides theoretical reference for the fracture law and risk monitoring of coal slippage.


Sign in / Sign up

Export Citation Format

Share Document