scholarly journals The Three-Dimensional Characteristic of Fungiform Papillae and its Taste Buds in European Bison (Bison Bonasus), Cattle (Bos Taurus), and Bison Bonasus Hybrid

Author(s):  
Barbara Plewa ◽  
Kinga Skieresz-Szewczyk ◽  
Hanna Jackowiak

Abstract Background: Our recent macro- and scanning electron microscopic study of tongue and lingual papillae conducted on domesticated cattle, wild living European bison, and its Bison bonasus hybrid revealed the presence of morphologic differences between parental species and the hybrid. Analysis of gustatory papillae indicated the variable distribution of fungiform papillae (Fu) on the dorsal and ventral surface of the apex and body of the tongue to be important in taste perception during feeding and in the discussion concerning differentiated diet and living environments of studied ruminants. To specify detailed macro-and microstructure of Fu papillae, and its connective tissue cores (CTC) and taste buds, we have chosen for the first time the three-dimensional computer-aided analysis of serial histoslides resulted in the rendering of 3D reconstructions of Fu papillae, which allowed also determine the histomorphometric characteristic of studied papillae. Results and conclusions:For comparative analysis of 3D models of Fu papillae and taste buds were taken from six areas of each tongue provided data about the diversity of Fu papillae in studied ruminants. The calculations of the number and density of Fu papillae of the tongues allowed us to distinguish the ventral surface of the lingual apex and posterolateral surfaces of the lingual torus as two regions important in taste perception, i.e., in the preselection of taken food and analysis of food during rumination, respectively. For the first time were indicated differences in grade of protrusion of Fu papillae over the tongue surface, the presence of three structural types of CTC, and the exact number of taste buds per papilla. The quantitative data of the number of taste buds expanded the knowledge about regional differences of the taste system. Moreover, 3D imaging resulted in the first description of variable patterns of distribution of taste buds over the surface of each Fu papillae. The comparison of obtained results determined new species-specific features in examined hybridand its similarities of some features with cattle, i.e., maternal species. The 3D reconstruction method proved to be an innovative and efficient tool in evaluating microstructures of Fu papillae, and it could be a suitable tool for further studies of gustatory papillae and taste buds in mammals.

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Barbara Plewa ◽  
Kinga Skieresz-Szewczyk ◽  
Hanna Jackowiak

Abstract Background Our recent macro- and scanning electron microscopic study of tongue conducted on domesticated cattle, wild living European bison, and Bison bonasus hybrid revealed various spatial arrangement and number of gustatory and mechanical papillae between parental species and their hybrid. Furthermore, scanning electron microscopy analysis of gustatory papillae indicated the variable distribution of fungiform papillae (Fu) over the surface of the tongue, which could be significant in differentiated taste perception during feeding in studied wild living and domesticated husbandry ruminants. To specify the detailed microstructure of Fu papillae with connective tissue cores (CTC) and intraepithelial taste buds system, the first time the three-dimensional computer-aided analysis of serial histoslides resulted in the rendering of 3D reconstructions of Fu papillae. Results The comparative analysis of 3D models Fu papillae conducted in six areas of lingual mucosa of each tongue revealed information about, microstructural diversity of Fu papillae in studied ruminants. The estimation of number and density of Fu papillae on tongues, rate of protrusion of papillae over mucosa, and a number of taste buds per papilla allowed to state the ventral surface of the lingual apex and posterolateral surfaces of the lingual torus as regions important in taste perception, as in the preselection of taken food, as well in the analysis of food during rumination, respectively. On the 3D models were observed three structural types of CTC of different distribution on the tongue in studied species. The quantitative data of the number of taste buds on Fu papillae have regional functional differences in the taste system important in feeding and veterinary practice. Moreover, our analysis determined specific features in examined hybrid and showed similarities of some studied features with cattle, i.e., maternal species. Conclusions The 3D reconstruction method used for the first time in the field of study of the lingual papillae and taste buds system can be considered as an innovative and effective tool in assessing of the microstructures of Fu papillae, and it could be suitable for further studies of taste system structures in normal and pathological condition.


2019 ◽  
Vol 19 (3) ◽  
pp. 184 ◽  
Author(s):  
Asim M. Khan ◽  
Saqib Ali ◽  
Reshma V. Jameela ◽  
Muhaseena Muhamood ◽  
Maryam F. Haqh

Fungiform papillae are raised lingual structures which contain taste buds and thus play an important role in taste perception. These structures vary in number due to their relative sensitivity to a range of systemic and local factors which affect the dorsum of the tongue. Taste sensation can be measured using both chemical and electrical methods; however, the number of fungiform papillae has a direct effect on chemogustometric and electrogustometric values during evaluation. This review provides a general overview of fungiform papillae, their quantification methods and the various factors which may affect these structures. In addition, numerous methods of recording taste sensation and their clinical applications are highlighted.Keywords: Sensation; Taste; Taste Perception; Tongue; Taste Buds; Investigative Techniques.


Author(s):  
Neng-Yu Zhang ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
Tom Obrig ◽  
Joachim Frank

We have reconstructed the 40S ribosomal subunit at a resolution of 4 nm using the single-exposure pseudo-conical reconstruction method of Radermacher et al.Small (40S) ribosomal subunits were Isolated from rabbit reticulocytes, applied to grids and negatively stained (0.5% uranyl acetate) in a manner that “sandwiches” the specimen between two layers of carbon. Regions of the grid exhibiting uniform and thick staining were identified and photographed twice (magnification 49,000X). The first micrograph was always taken with the specimen tilted by 50° and the second was of the Identical area untilted (Fig. 1). For each of the micrographs the specimen was subjected to an electron dose of 2000-3000 el/nm2.Three hundred thirty particles appearing in the L view (defined in [4]) were selected from both tilted- and untilted-specimen micrographs. The untilted particles were aligned and their rotational alignment produced the azimuthal angles of the tilted particles in the conical tilt series.


2019 ◽  
pp. 42-44
Author(s):  
I.V. GUSAROV ◽  
V.A. OSTAPENKO ◽  
T.V. NOVIKOVА

Впервые в мире создана популяция зубров на территории 60 градусов северной широты. В новых климатических условиях разведения и сохранения зубров определены и проанализированы факторы существования вида на севере Европейской части РФ. Выявлены признаки, динамика численности, которые являются составной частью системы, предназначенной для управления биоразнообразием. Интродукция, являясь процессом введения в экосистему нехарактерных для нее видов, может усиливать изменения биоценозов как положительно, так и отрицательно. Насколько быстро и успешно проходит процесс адаптации заселенного вида, и усматривается его влияние на окружающую среду зависит дальнейшее существование зубров и в целом биоразнообразия. В статье обсуждаются вопросы взаимоотношения зубров с другими видами копытных и хозяйственной деятельностью человека, а также дальнейшим использованием зубров в сельскохозяйственном производстве. Пластичность зубров, выявление изменений и их анализ при вселении видов в новые условия обитания необходимы не только для определения развития или деградации биоценозов и в целом экосистемы, но и прогноза социально-экономических последствий интродукции как одного из методов сохранения редких и исчезающих видов фауны.For the first time in the world, a bison population has been created in an area of 60 degrees north latitude. In the new climatic conditions of breeding and preservation of bison, the factors of the species existence in the north of the European part of the Russian Federation are identified and analyzed. The signs, dynamics of abundance, which are an integral part of the system designed to manage biodiversity are identified, since the preservation of biological diversity on the planet is one of the main problems of our time. Introduction, being the process of introducing non-typical species into an ecosystem, can enhance changes in biocenoses, both positively and negatively. The question posing sounds especially when it comes to such a large hoofed animal as the European bison. How quickly and successfully the process of adaptation of the universe takes place and its environmental impact is seen depends on the continued existence of bison and biodiversity in general. The article discusses the relationship of bison with other types of ungulates and human activities, as well as the further use of bison in agricultural production. How these issues will be resolved positively depends on the future of these animals. Thus, the plasticity of bison, the identification of changes and their analysis, with the introduction of species into new habitat conditions is necessary not only to determine the development or degradation of biocenoses and the ecosystem as a whole, but also to predict the socio-economic consequences due to the introduction as one of the methods of preserving rare and endangered species of fauna.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Luo ◽  
Yuma Nakamura ◽  
Jinseon Park ◽  
Mina Yoon

AbstractRecent experiments identified Co3Sn2S2 as the first magnetic Weyl semimetal (MWSM). Using first-principles calculation with a global optimization approach, we explore the structural stabilities and topological electronic properties of cobalt (Co)-based shandite and alloys, Co3MM’X2 (M/M’ = Ge, Sn, Pb, X = S, Se, Te), and identify stable structures with different Weyl phases. Using a tight-binding model, for the first time, we reveal that the physical origin of the nodal lines of a Co-based shandite structure is the interlayer coupling between Co atoms in different Kagome layers, while the number of Weyl points and their types are mainly governed by the interaction between Co and the metal atoms, Sn, Ge, and Pb. The Co3SnPbS2 alloy exhibits two distinguished topological phases, depending on the relative positions of the Sn and Pb atoms: a three-dimensional quantum anomalous Hall metal, and a MWSM phase with anomalous Hall conductivity (~1290 Ω−1 cm−1) that is larger than that of Co2Sn2S2. Our work reveals the physical mechanism of the origination of Weyl fermions in Co-based shandite structures and proposes topological quantum states with high thermal stability.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Daniel Klich ◽  
Rafał Łopucki ◽  
Marta Gałązka ◽  
Agnieszka Ścibior ◽  
Dorota Gołębiowska ◽  
...  

Abstract Background Captive European bison (Bison bonasus) play an active role in conservation measures for this species; this includes education, which may conflict with these animals’ welfare. The effect of the presence of visitors on the welfare of captive animals can be negative, positive or neutral. However, the response of a given species to visitors is difficult to predict, since even closely related species display varying levels of tolerance to captivity. The aim of the study was to compare immunoreactive fecal cortisol levels (regarded as an indicator of the level of physiological stress) in groups of captive European bison that differed in terms of their social structure and the level of visitor pressure. The second aim was to determine if there was a correlation between intestinal parasitic burden and immunoreactive fecal cortisol levels. Results Immunoreactive fecal cortisol levels were not influenced by sex or age. However, study site and the interaction between study site and visitor pressure were statistically significant. European bison in one enclosure presented higher levels of immunoreactive fecal cortisol on weekdays than at weekends. In the other two study sites, the levels did not differ between weekdays and weekends. No correlation was found between parasitological infestation and immunoreactive fecal cortisol levels. Conclusions Measurement of fecal cortisol metabolites could be a valuable method for further research into the welfare of European bison in captivity. More subtle factors such as individual animal characteristics, feeding systems, and the arrangement of enclosures can be of great importance in terms of the effect of visitors on animals. The results of this study can be used in guidelines for the management of European bison populations.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3493
Author(s):  
Gahyeon Lim ◽  
Nakju Doh

Remarkable progress in the development of modeling methods for indoor spaces has been made in recent years with a focus on the reconstruction of complex environments, such as multi-room and multi-level buildings. Existing methods represent indoor structure models as a combination of several sub-spaces, which are constructed by room segmentation or horizontal slicing approach that divide the multi-room or multi-level building environments into several segments. In this study, we propose an automatic reconstruction method of multi-level indoor spaces with unique models, including inter-room and inter-floor connections from point cloud and trajectory. We construct structural points from registered point cloud and extract piece-wise planar segments from the structural points. Then, a three-dimensional space decomposition is conducted and water-tight meshes are generated with energy minimization using graph cut algorithm. The data term of the energy function is expressed as a difference in visibility between each decomposed space and trajectory. The proposed method allows modeling of indoor spaces in complex environments, such as multi-room, room-less, and multi-level buildings. The performance of the proposed approach is evaluated for seven indoor space datasets.


Sign in / Sign up

Export Citation Format

Share Document