scholarly journals Influence of Metallic Powder Characteristics On Extruded Feedstock Performance For Indirect Additive Manufacturing

Author(s):  
Cyril Santos ◽  
Daniel Gatões ◽  
Fábio Cerejo ◽  
Teresa Vieira

Abstract Material Extrusion (MEX) of metallic powder-based filaments has been showing great potential as an additive manufacturing technology. MEX provides an easy solution, as an alternative to direct additive manufacturing technologies (e.g. SLM, EBM, DED) for problematic metallic powder, like copper powder, due to its reflectivity and thermal conductivity. MEX, an indirect technology, consists of 5 steps – optimising metal powder, mixing (feedstock), filament production, shaping, debinding and sintering. The great challenge in MEX is, undoubtedly, filament manufacturing for optimal green density, and consequently the sintered properties. The filament, to be extrudable, must accomplish at optimal powder volume concentration (CPVC) with good rheological performance, flexibility, and stiffness. These have a main role in the quality of the 3D objects after debinding and sintering. In this study, a feedstock composition (similar binder, additives and CPVC - 61% vol.) of copper with three different particle powder characteristics was selected, in order to highlight their role. The quality of the filaments, strands and 3D objects was analyzed by micro-CT highlighting the influence of the different powder characteristics on the homogeneity and defects of the greens. Sintered filaments were also analysed, regarding hardness, microstructure and a comparison between green and sintered defects, using micro-CT. The filament based on particles powder with D50 close to 11 µm and straight distribution of particles size shows the best homogeneity and lower defects.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7136
Author(s):  
Cyril Santos ◽  
Daniel Gatões ◽  
Fábio Cerejo ◽  
Maria Teresa Vieira

Material extrusion (MEX) of metallic powder-based filaments has shown great potential as an additive manufacturing (AM) technology. MEX provides an easy solution as an alternative to direct additive manufacturing technologies (e.g., Selective Laser Melting, Electron Beam Melting, Direct Energy Deposition) for problematic metallic powders such as copper, essential due to its reflectivity and thermal conductivity. MEX, an indirect AM technology, consists of five steps—optimisation of mixing of metal powder, binder, and additives (feedstock); filament production; shaping from strands; debinding; sintering. The great challenge in MEX is, undoubtedly, filament manufacturing for optimal green density, and consequently the best sintered properties. The filament, to be extrudable, must accomplish at optimal powder volume concentration (CPVC) with good rheological performance, flexibility, and stiffness. In this study, a feedstock composition (similar binder, additives, and CPVC; 61 vol. %) of copper powder with three different particle powder characteristics was selected in order to highlight their role in the final product. The quality of the filaments, strands, and 3D objects was analysed by micro-CT, highlighting the influence of the different powder characteristics on the homogeneity and defects of the greens; sintered quality was also analysed regarding microstructure and hardness. The filament based on particles powder with D50 close to 11 µm, and straight distribution of particles size showed the best homogeneity and the lowest defects.


2021 ◽  
Vol 30 (9) ◽  
pp. 7019-7034
Author(s):  
Marco Mitterlehner ◽  
Herbert Danninger ◽  
Christian Gierl-Mayer ◽  
Harald Gschiel ◽  
Carlos Martinez ◽  
...  

AbstractIn recent years, the interest in additive manufacturing technologies has increased significantly, most of them using powders as feedstock material. It is therefore essential to check the quality of the powder before processing in order to ensure the same quality of the printed components at all times. This kind of quality assurance of a powder should be carried out independently of the additive manufacturing technology used. Since there is a lack of standards in this field, various powder analysis methods are available, with which, in principle, the same characteristics can often be measured, at least nominally. To verify the validity of these methods, three different nickel-based powders used for additive manufacturing were examined in the present study using standard methods (apparent density, tap density, Hall flow rate, optical microscopy, scanning electron microscopy) and advanced characterization methods (dynamic image analysis, x-ray microcomputed tomography, adsorption measurement by Brunauer–Emmett–Teller method). A special focus has been given on particle size distribution, particle shape, specific surface area, and internal porosity. The results of these measurements were statistically compared. This study therefore provides an insight into the advantages and disadvantages of various optical characterization techniques.


2019 ◽  
Vol 1 (7) ◽  
pp. 31-34
Author(s):  
A. V. Chabanenko ◽  
V. O. Smirnova ◽  
G. V. Getmanova ◽  
S. A. Nazarevich

Now, an increase in productivity due to computer-aided manufacturing using digital prototypes is reflected in the formation and development of additive manufacturing technologies, also known as «Layer Synthesis». The use of additive technologies allows us to provide individualization of production, reduce material-intensive costs, increase the economic efficiency and effectiveness of the production of body elements of electronic equipment (REA), as well as improve the quality of the body elements produced. In additive manufacturing, it is necessary to consider many parameters and characteristics incorporated in the installation. To ensure the quality of additive production, it is very important to observe the required temperature conditions depending on the material used. The article deals with the issues of setting the temperature regimes and controlling the additive system. A comprehensive indicator of product quality is proposed, taking into account the safety parameters and identification indicators of the properties of polymers used in additive manufacturing.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2951 ◽  
Author(s):  
Paweł Fiedor ◽  
Joanna Ortyl

The following article introduces technologies that build three dimensional (3D) objects by adding layer-upon-layer of material, also called additive manufacturing technologies. Furthermore, most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing are covered. The micromanufacturing method covers photopolymerization-based methods such as stereolithography (SLA), digital light processing (DLP), the liquid crystal display–DLP coupled method, two-photon polymerization (TPP), and inkjet-based methods. Functional photocurable materials, with magnetic, conductive, or specific optical applications in the 3D printing processes are also reviewed.


Author(s):  
D. Ahmadkhaniha ◽  
H. Möller ◽  
C. Zanella

AbstractSelective laser melting is one of the additive manufacturing technologies that have been known for building various and complicated shapes. Despite numerous advantages of additive manufacturing technologies, they strongly influence the microstructure and typically show a relatively high surface roughness. In this study, maraging steel was produced by selective laser melting (SLM), and its microstructure, hardness and corrosion behavior before and after heat treatment were studied and compared to traditionally manufactured ones (wrought, forged samples). In addition, the effect of electropolishing on the surface roughness was evaluated. The microstructural study was carried out by scanning electron microscopy equipped with electron backscattered diffraction in three different sections: parallel to the top surface (xy), transverse cross section (xz) and longitudinal cross section (yz). The same characterization was applied to heat-treated samples, austenitized and quenched as well as the aged ones. The results showed that selective laser melting produced a fine grain martensitic structure (in the as-printed condition) with a surface roughness (Ra) of about 10 µm. There was no sign of preferred texture or anisotropy in the microstructure of as-print SLM materials. The SLM microstructure was similar in all 3 sections (xy, xz and yz). Despite finer microstructure, nano-hardness and corrosion behavior of SLM and conventional wrought maraging steel in heat-treated conditions were similar. Aging resulted in the maximum nano-hardness and the minimum corrosion potential values. Precipitation has the main role in both hardness and corrosion behavior. Electropolishing was optimized and reduced the surface roughness (Ra) by 65%.


Author(s):  
Snehashis Pal ◽  
Nenad Gubeljak ◽  
Tonica Bončina ◽  
Radovan Hudák ◽  
Teodor Toth ◽  
...  

AbstractIn this study, the effect of powder spreading direction was investigated on selectively laser-melted specimens. The results showed that the metallurgical properties of the specimens varied during fabrication with respect to their position on the build tray. The density, porosity, and tensile properties of the Co–Cr–W–Mo alloy were investigated on cuboid and tensile specimens fabricated at different locations. Two different significant positions on the tray were selected along the powder spreading direction. One set of specimens was located near the start line of powder spreading, and the other set was located near the end of the building tray. The main role in the consequences of powder layering was played by the distribution of powder particle sizes and the packing density of the layers. As a result, laser penetration, melt pool formation, and fusion characteristics varied. To confirm the occurrence of variations in sample density, an additional experiment was performed with a Ti–6Al–4V alloy. Furthermore, the powders were collected at two different fabricating locations and their size distribution for both materials was investigated.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Sign in / Sign up

Export Citation Format

Share Document