scholarly journals Serpina3c Deficiency Induced Necroptosis Promotes Non-Alcoholic Steatohepatitis Through β-Catenin/Foxo1/TLR4 Signaling

Author(s):  
Linglin Qian ◽  
Jing-jing Ji ◽  
Yu Jiang ◽  
Jia-Qi Guo ◽  
Ya Wu ◽  
...  

Abstract Background: Hepatocyte death and liver inflammation have been recognized as central characteristics of nonalcoholic steatohepatitis (NASH); however, the underlying molecular mechanism remains elusive. The aim of this study is to determine the precise role of serpina3c in the progression of NASH.Methods: Male Apoe-/-/serpina3c-/- double knockout (DKO) and Apoe-/- mice were fed a high-fat diet (HFD) for 12 weeks to induce NASH. Several markers of steatosis and inflammation were evaluated. In vitro cell models induced by palmitic acid (PA) treatment were used to evaluate the beneficial effect of serpina3c on necroptosis and the underlying molecular mechanism.Results: Compared with Apoe-/- mice, DKO mice exhibited a significantly exacerbated NASH phenotype that included hepatic steatosis, inflammation, fibrosis and liver damage, and increased hepatic triglyceride contents. We also indicated that the expression of the receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) was increased in DKO mice. Our results found that serpina3c knockdown promoted necroptosis and lipid droplet formation under conditions of lipotoxicity in vitro. However, these phenomena were reversed by the overexpression of serpina3c. Mechanistically, downregulation of serpina3c expression promoted Foxo1 and β-catenin expression, and Foxo1 and β-catenin colocalized in the nucleus under conditions of lipotoxicity, consequently upregulating the expression of Toll-like receptor4 (TLR4). However, disruption of the Foxo1-β/catenin by Foxo1 and β-catenin inhibitors decreased TLR4 expression and ameliorated hepatic necroptosis in vitro.Conclusion: Serpina3c plays a protective role against the progression of NASH by inhibiting necroptosis. Serpina3c, a Wnt/β-catenin inhibitor, inhibits necroptosis via β-catenin/Foxo1 by inhibiting TLR4 expression.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jian Tang ◽  
Chengxiao Fu ◽  
Yanwen Li ◽  
Shuangqin Chen ◽  
Xiaoxin Jiang ◽  
...  

Nasopharyngeal carcinoma (NPC) is a kind of malignancy generated from the nasopharyngeal epithelium. Recently, long noncoding RNA (lncRNA) has been shown to be involved in the regulation of many signaling pathways and is closely associated with carcinogenesis and tumor progression. However, the precise role of lncRNA Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in NPC is not well understood. Here, we find that OIP5-AS1 is overexpressed in NPC patient specimens and NPC cell lines. Further investigations reveal that knockdown of OIP5-AS1 significantly inhibits the proliferation, migration, and invasion and accelerates the apoptosis of NPC cells in vitro. Consistent with these findings, NPC progression is significantly slowed in mice when OIP5-AS1 is knocked down. Interestingly, there is a functional link between OIP5-AS1 and microRNA-203 (miR-203), a tumor suppressor, in NPC cells. In conclusion, our data demonstrate that OIP5-AS1 plays an important role in the development and progression of NPC by targeting miR-203 and therefore provide a promising target for the treatment of NPC.


2021 ◽  
Vol 135 (3) ◽  
pp. 447-463
Author(s):  
Ling-lin Qian ◽  
Jing-jing Ji ◽  
Jia-qi Guo ◽  
Yan-ping Wu ◽  
Gen-shan Ma ◽  
...  

Abstract Abnormal vascular smooth muscle cell (VSMC) proliferation is a critical step in the development of atherosclerosis. Serpina3c is a serine protease inhibitor (serpin) that plays a key role in metabolic diseases. The present study aimed to investigate the role of serpina3c in atherosclerosis and regulation of VSMC proliferation and possible mechanisms. Serpina3c is down-regulated during high-fat diet (HFD)-induced atherosclerosis. An Apoe−/−/serpina3c−/−-double-knockout mouse model was used to determine the role of serpina3c in atherosclerosis after HFD for 12 weeks. Compared with Apoe−/− mice, the Apoe−/−/serpina3c−/− mice developed more severe atherosclerosis, and the number of VSMCs and macrophages in aortic plaques was significantly increased. The present study revealed serpina3c as a novel thrombin inhibitor that suppressed thrombin activity. In circulating plasma, thrombin activity was high in the Apoe−/−/serpina3c−/− mice, compared with Apoe−/− mice. Immunofluorescence staining showed thrombin and serpina3c colocalization in the liver and aortic cusp. In addition, inhibition of thrombin by dabigatran in serpina3c−/− mice reduced neointima lesion formation due to partial carotid artery ligation. Moreover, an in vitro study confirmed that thrombin activity was also decreased by serpina3c protein, supernatant and cell lysate that overexpressed serpina3c. The results of experiments showed that serpina3c negatively regulated VSMC proliferation in culture. The possible mechanism may involve serpina3c inhibition of ERK1/2 and JNK signaling in thrombin/PAR-1 system-mediated VSMC proliferation. Our results highlight a protective role for serpina3c as a novel thrombin inhibitor in the development of atherosclerosis, with serpina3c conferring protection through the thrombin/PAR-1 system to negatively regulate VSMC proliferation through ERK1/2 and JNK signaling.


2004 ◽  
Vol 167 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Brenton L. Scott ◽  
Jeffrey S. Van Komen ◽  
Hassan Irshad ◽  
Song Liu ◽  
Kirilee A. Wilson ◽  
...  

Sec1 proteins are critical players in membrane trafficking, yet their precise role remains unknown. We have examined the role of Sec1p in the regulation of post-Golgi secretion in Saccharomyces cerevisiae. Indirect immunofluorescence shows that endogenous Sec1p is found primarily at the bud neck in newly budded cells and in patches broadly distributed within the plasma membrane in unbudded cells. Recombinant Sec1p binds strongly to the t-SNARE complex (Sso1p/Sec9c) as well as to the fully assembled ternary SNARE complex (Sso1p/Sec9c;Snc2p), but also binds weakly to free Sso1p. We used recombinant Sec1p to test Sec1p function using a well-characterized SNARE-mediated membrane fusion assay. The addition of Sec1p to a traditional in vitro fusion assay moderately stimulates fusion; however, when Sec1p is allowed to bind to SNAREs before reconstitution, significantly more Sec1p binding is detected and fusion is stimulated in a concentration-dependent manner. These data strongly argue that Sec1p directly stimulates SNARE-mediated membrane fusion.


1989 ◽  
Vol 66 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
M. Munakata ◽  
I. Huang ◽  
W. Mitzner ◽  
H. Menkes

We developed an in vitro system to assess the role of the epithelium in regulating airway tone using the intact guinea pig trachea (J. Appl. Physiol. 64: 466–471, 1988). This method allows us to study the response of the airway when its inner epithelial surface or its outer serosal surface is stimulated independently. Using this system we evaluated how the presence of intact epithelium can affect pharmacological responsiveness. We first examined responses of tracheae with intact epithelium to histamine, acetylcholine, and hypertonic KCl when stimulated from the epithelial or serosal side. We then examined the effect of epithelial denudation on the responses to these agonists. With an intact epithelium, stimulation of the inner epithelial side always caused significantly smaller changes in diameter than stimulation of the outer serosal side. After mechanical denudation of the epithelium, these differences were almost completely abolished. In the absence of intact epithelium, the trachea was 35-fold more sensitive to histamine and 115-fold more sensitive to acetylcholine when these agents were applied to the inner epithelial side. In addition, the presence of an intact epithelium almost completely inhibited any response to epithelial side challenge with hypertonic KCl. These results indicate that the airway epithelial layer has a potent protective role in airway responses to luminal side stimuli, leading us to speculate that changes in airway reactivity measured in various conditions including asthma may result in part from changes in epithelial function.


2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


2016 ◽  
Vol 62 (5) ◽  
pp. 45-46
Author(s):  
Paulina Ormazabal ◽  
Beatrice Scazzocchio ◽  
Rosaria Varì ◽  
Annunziata Iacovelli ◽  
Roberta Masella

Adipocytes exposed to high glucose concentrations exhibit impaired insulin signaling. Binding of insulin to its membrane receptor activates insulin metabolic pathway leading to IRS-1 and AKT phosphorylations. The accumulation of visceral adipose tissue (VAT) correlates with insulin resistance and metabolic syndrome. Anthocyanins (ACN) are bioactive food compounds of great nutritional interest. We have shown that protocatechuic acid (PCA), a major metabolite of ACN, might exert insulin-sensitizer activities in human visceral adipose tissue. The aim of this work was to define the protective role of PCA against insulin-resistance induced by high glucose in VAT.Methodology: VAT obtained from control subject (BMI≤25) were separated in four experimental groups: i) PCA: samples treated for 24 h with 100 μM PCA, ii) GLU: VAT treated with 30 mM glucose for 24 h, iii) PCA+GLU: 1 hour incubation with 100 μM PCA before adding glucose (30 mM, 24 h), iv) CTR: vehicle. After treatment, VAT groups were (or not) acutely stimulated with insulin (20 nM, 20 min). Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting (WB) in basal or insulin stimulated tissues in all experimental groups. Samples were assessed for IRS-1, IR, Akt and GLUT4 protein content by WB. Results: No differences in protein contents between experimental groups were found. GLU tissues showed a lower increment in insulin-stimulated phosphorylation of IRS-1 and Akt compared to CTR and PCA samples. This impaired activation was completely reversed by the pretreatment with PCA.Conclusion: An in-vitro insulin-resistance condition induced by high glucose was established in biopsies of VAT. PCA restores the ability of GLU-tissues to fully respond to insulin by increasing IRS-1 and Akt phosphorylations. These results confirm the insulin-sensitizer effect of PCA on VAT previously reported by our group. An anthocyanin rich diet might help to protect against insulin-resistance in VAT.


1999 ◽  
Vol 19 (10) ◽  
pp. 6500-6508 ◽  
Author(s):  
Nanette J. Pazdernik ◽  
David B. Donner ◽  
Mark G. Goebl ◽  
Maureen A. Harrington

ABSTRACT The death domain-containing receptor superfamily and their respective downstream mediators control whether or not cells initiate apoptosis or activate NF-κB, events critical for proper immune system function. A screen for upstream activators of NF-κB identified a novel serine-threonine kinase capable of activating NF-κB and inducing apoptosis. Based upon domain organization and sequence similarity, this novel kinase, named mRIP3 (mouse receptor interacting protein 3), appears to be a new RIP family member. RIP, RIP2, and mRIP3 contain an N-terminal kinase domain that share 30 to 40% homology. In contrast to the C-terminal death domain found in RIP or the C-terminal caspase-recruiting domain found in RIP2, the C-terminal tail of mRIP3 contains neither motif and is unique. Despite this feature, overexpression of the mRIP3 C terminus is sufficient to induce apoptosis, suggesting that mRIP3 uses a novel mechanism to induce death. mRIP3 also induced NF-κB activity which was inhibited by overexpression of either dominant-negative NIK or dominant-negative TRAF2. In vitro kinase assays demonstrate that mRIP3 is catalytically active and has autophosphorylation site(s) in the C-terminal domain, but the mRIP3 catalytic activity is not required for mRIP3 induced apoptosis and NF-κB activation. Unlike RIP and RIP2, mRIP3 mRNA is expressed in a subset of adult tissues and is thus likely to be a tissue-specific regulator of apoptosis and NF-κB activity. While the lack of a dominant-negative mutant precludes linking mRIP3 to a known upstream regulator, characterizing the expression pattern and the in vitro functions of mRIP3 provides insight into the mechanism(s) by which cells modulate the balance between survival and death in a cell-type-specific manner.


2020 ◽  
Vol 8 (7) ◽  
pp. 1087
Author(s):  
Manuela Donalisio ◽  
Simona Cirrincione ◽  
Massimo Rittà ◽  
Cristina Lamberti ◽  
Andrea Civra ◽  
...  

Breast milk is a complex biofluid that nourishes infants, supports their growth and protects them from diseases. However, at the same time, breastfeeding is a transmission route for human cytomegalovirus (HCMV), with preterm infants being at a great risk of congenital disease. The discrepancy between high HCMV transmission rates and the few reported cases of infants with severe clinical illness is likely due to the protective effect of breast milk. The aim of this study was to investigate the anti-HCMV activity of human preterm colostrum and clarify the role of colostrum-derived extracellular vesicles (EVs). Preterm colostrum samples were collected and the EVs were purified and characterized. The in vitro anti-HCMV activity of both colostrum and EVs was tested against HCMV, and the viral replication step inhibited by colostrum-purified EVs was examined. We investigated the putative role EV surface proteins play in impairing HCMV infection using shaving experiments and proteomic analysis. The obtained results confirmed the antiviral action of colostrum against HCMV and demonstrated a remarkable antiviral activity of colostrum-derived EVs. Furthermore, we demonstrated that EVs impair the attachment of HCMV to cells, with EV surface proteins playing a role in mediating this action. These findings contribute to clarifying the mechanisms that underlie the protective role of human colostrum against HCMV infection.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


Sign in / Sign up

Export Citation Format

Share Document