scholarly journals Micro-CT Mineral Density Profile as Reference Standard for Early Carious Lesion Activity Assessment.

Author(s):  
Adam Michael Hoxie ◽  
Aline de Almeida Neves ◽  
Kevin Moss ◽  
Adalberto Bastos de Vasconcellos ◽  
Andrea Ferreira-Zandona ◽  
...  

Abstract A challenging and crucial component to clinical caries diagnosis is diagnosing the activity of early lesions because it may have a significant impact on treatment decisions. This study aims to utilize microtomographic (micro-CT) scans of the enamel smooth surface layer to serve as a reference standard for future ex vivo caries activity assessment validation studies. Sound and non-cavitated (ICDAS 1-3) smooth surfaces (n=59) of extracted permanent teeth were examined for caries activity by calibrated individuals via visual-tactile examination. Each surface was scanned via micro-CT and line plot analysis generated plots of the mineral density against lesion depth, where the AUC was calculated. AUC thresholds were established to classify sound, remineralized, and demineralized surfaces against the gold standard examiner’s ICCMS assessment of sound, inactive, and active lesions, respectively. Diagnostic thresholds were associated with caries ICCMS activity classification using AUC mineral density values of the most external 96 μm of enamel. The established thresholds demonstrated 76.3% agreement with the ICCMS assessment in identifying demineralized lesions (k=0.45), with high sensitivity (0.73) and specificity (0.77). This study demonstrates quantifiable differences among demineralized, remineralized lesions, and sound surfaces, which contributes to the establishment of micro-CT as a reference standard for caries activity that may be used to improve clinical and technological caries examinations.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hong Hong ◽  
Chao Guo ◽  
Zhi-Hua Liu ◽  
Bo-Jie Wang ◽  
Shu-Zhe Zhou ◽  
...  

Abstract Background Cornell assessment of pediatric delirium (CAPD) showed advantage in diagnosis of pediatric delirium in Chinese critically ill patients. But its performance in surgical patients is still unclear. The present study was designed to validate the diagnostic performance of CAPD in surgical pediatric patients. Methods This is a prospective validation study. Pediatric patients who underwent selective surgery and general anesthesia were enrolled. Primary outcome was the incidence of delirium within postoperative three days. CAPD Chinese version was used to evaluate if the patient had delirium one time per day. At the meantime, a psychiatrist employed Diagnostic and Statistical Manual of Mental Disorders fifth edition to diagnose delirium, which was the “gold standard”, and the result was considered as reference standard. Sensitivity, specificity and area under receiver operating characteristic (ROC) curve were calculated to investigate the performance of CAPD. Results A total of 170 patients were enrolled. Median age was 4 years old. As diagnosed by psychiatrist, 23 (13.5 %) patients experienced at least one episode of delirium during the follow-up period. When diagnostic threshold was set at 9, CAPD showed the optimal sensitivity (87.0 %, 95 %CI 65.3 %-96.6 %) and specificity (98.0 %, 95 %CI 93.7 %-99.5 %) in comparison with other diagnostic thresholds. ROC analysis showed that CAPD was a good delirium assessment instrument with area under curve of 0.911 (95 % CI 0.812 to 1.000, P < 0.001). Agreement between CAPD and reference standard was 0.849 (Kappa coefficient, P < 0.001). Conclusions This study found that Cornell assessment of pediatric delirium could be used as an effective instrument in diagnosis of delirium in pediatric surgical patients. Trial registration www.chictr.org.cn Identifier: ChiCTR-DDD-17,012,231, August 3, 2017.


Author(s):  
Melissa R. Requist ◽  
Yantarat Sripanich ◽  
Tim Rolvien ◽  
Amy L. Lenz ◽  
Alexej Barg

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Imam Uddin ◽  
Tyler C. Kilburn ◽  
Sara Z. Jamal ◽  
Craig L. Duvall ◽  
John S. Penn

AbstractDiabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are potentially blinding conditions largely due to their respective neovascular components. The development of real-time in vivo molecular imaging methods, to assess levels of retinal neovascularization (NV), would greatly benefit patients afflicted with these conditions. mRNA hybridization techniques offer a potential method to image retinal NV. The success of these techniques hinges on the selection of a target mRNA whose tissue levels and spatial expression patterns correlate closely with disease burden. Using a model of oxygen-induced retinopathy (OIR), we previously observed dramatic increases in retinal endoglin that localized to neovascular structures (NV), directly correlating with levels of neovascular pathology. Based on these findings, we have investigated Endoglin mRNA as a potential marker for imaging retinal NV in OIR mice. Also of critical importance, is the application of innovative technologies capable of detecting mRNAs in living systems with high sensitivity and specificity. To detect and visualize endoglin mRNA in OIR mice, we have designed and synthesized a novel imaging probe composed of short-hairpin anti-sense (AS) endoglin RNA coupled to a fluorophore and black hole quencher (AS-Eng shRNA). This assembly allows highly sensitive fluorescence emission upon hybridization of the AS-Eng shRNA to cellular endoglin mRNA. The AS-Eng shRNA is further conjugated to a diacyl-lipid (AS-Eng shRNA–lipid referred to as probe). The lipid moiety binds to serum albumin facilitating enhanced systemic circulation of the probe. OIR mice received intraperitoneal injections of AS-Eng shRNA–lipid. Ex vivo imaging of their retinas revealed specific endoglin mRNA dependent fluorescence superimposed on neovascular structures. Room air mice receiving AS-Eng shRNA–lipid and OIR mice receiving a non-sense control probe showed little fluorescence activity. In addition, we found that cells in neovascular lesions labelled with endoglin mRNA dependent fluorescence, co-labelled with the macrophage/microglia-associated marker IBA1. Others have shown that cells expressing macrophage/microglia markers associate with retinal neovascular structures in proportion to disease burden. Hence we propose that our probe may be used to image and to estimate the levels of retinal neovascular disease in real-time in living systems.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Aira Matsugaki ◽  
Yumi Kimura ◽  
Ryota Watanabe ◽  
Fumihito Nakamura ◽  
Ryo Takehana ◽  
...  

Malignant melanoma favors spreading to bone, resulting in a weakened bone with a high fracture risk. Here, we revealed the disorganized alignment of apatite crystals in the bone matrix associated with the homing of cancer cells by developing an artificially controlled ex vivo melanoma bone metastasis model. The ex vivo metastasis model reflects the progressive melanoma cell activation in vivo, resulting in decreased bone mineral density and expression of MMP1-positive cells. Moreover, less organized intercellular connections were observed in the neighboring osteoblasts in metastasized bone, indicating the abnormal and randomized organization of bone matrix secreted by disconnected osteoblasts. Our study revealed that the deteriorated microstructure associated with disorganized osteoblast arrangement was a determinant of malignant melanoma-related bone dysfunction.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
R Bhoite ◽  
H Jinnouchi ◽  
F Otsuka ◽  
Y Sato ◽  
A Sakamoto ◽  
...  

Abstract Background In many studies, struts coverage is defined as &gt;0 mm of tissue overlying the stent struts by optical coherence tomography (OCT). However, this definition has never been validated using histology as the “gold standard”. The present study sought to assess the appropriate cut-off value of neointimal thickness of stent strut coverage by OCT using histology. Methods OCT imaging was performed on 39 human coronary arteries with stents from 25 patients at autopsy. A total of 165 cross-sectional images from 46 stents were co-registered with histology. The optimal cut-off value of strut coverage by OCT was determined. Strut coverage by histology was defined as endothelial cells with at least underlying two layers of smooth muscle cells. Considering the resolution of OCT is 10–20 μm, 3 different cut-off values (i.e. at ≥20, ≥40, and ≥60 μm) were assessed. Results A total of 2235 struts were evaluated by histology. Eventually, 1216 struts which were well-matched struts were analyzed in this study. By histology, uncovered struts were observed in 160 struts and covered struts were observed in 1056 struts. The broadly used definition of OCT-coverage which does not consider neointimal thickness yielded a poor specificity of 37.5% and high sensitivity 100%. Of 3 cut-off values, the cut-off value of &gt;40 μm was more accurate as compared to &gt;20 and &gt;60 mm [sensitivity (99.3%), specificity (91.0%), positive predictive value (98.6%), and negative predictive value (95.6%)] Conclusion The most accurate cut-off value was ≥40 μm neointimal thickness by OCT in order to identify stent strut coverage validated by histology. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Zenzes ◽  
Paul Zaslansky

AbstractMicro-CT provides critical data for musculoskeletal research, yielding three-dimensional datasets containing distributions of mineral density. Using high-resolution scans, we quantified changes in the fine architecture of bone in the spine of young mice. This data is made available as a reference to physiological cancellous bone growth. The scans (n = 19) depict the extensive structural changes typical for female C57BL/6 mice pups, aged 1-, 3-, 7-, 10- and 14-days post-partum, as they attain the mature geometry. We reveal the micro-morphology down to individual trabeculae in the spine that follow phases of mineral-tissue rearrangement in the growing lumbar vertebra on a micrometer length scale. Phantom data is provided to facilitate mineral density calibration. Conventional histomorphometry matched with our micro-CT data on selected samples confirms the validity and accuracy of our 3D scans. The data may thus serve as a reference for modeling normal bone growth and can be used to benchmark other experiments assessing the effects of biomaterials, tissue growth, healing, and regeneration.


2004 ◽  
Vol 12 (8) ◽  
pp. 614-626 ◽  
Author(s):  
Danika L. Batiste ◽  
Alexandra Kirkley ◽  
Sheila Laverty ◽  
Lisa M.F. Thain ◽  
Alison R. Spouge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document