scholarly journals Boron Carbide Nanowires from Castor Oil for Optronic Applications: A Low-Temperature Greener Approach

2020 ◽  
Author(s):  
H. V. Saritha Devi ◽  
M. S. Swapna ◽  
S SANKARARAMAN

Abstract The development of one-dimensional nanostructures has revolutionized electronic and photonic industries because of their unique properties. The present paper reports the low-temperature green synthesis of boron carbide nanowires, of diameter 14 nm and length 750 nm, by the condensation method using castor oil as the carbon precursor. The nanowires synthesized exhibit beaded chain morphology, and bandgap energy of 2.08 eV revealed through the Tauc plot analysis. The structure of boron carbide nanowires is revealed by Fourier transform infrared spectroscopy and X-ray diffraction analyses. The photoluminescence study reveals the nanowire's blue light emission capability under ultraviolet excitation, which is substantiated by the CIE plot suggesting its potential in photonic applications.

2014 ◽  
Vol 602-603 ◽  
pp. 270-273 ◽  
Author(s):  
Yu Feng Xu ◽  
Hong Qiang Ru ◽  
Xin Yan Yue

The application of B4C as structural materials has been restricted largely because of its poor sinter-ability. Compared with pressure-less and hot pressing methods, sintering the B4C via the reaction-bonded boron carbide (RBBC) can to great extent circumvent such problem, which can even be conducted at low temperature, when Si/Si-based alloy was used as binding phase. However molten Si/Si-based alloy infiltrated into performs of bare B4C powders can strongly react with and significantly consume B4C particles based on molten infiltration reaction method. The present study aims to encapsulate B4C particles with a protective layer to block off its contact with molten Si/ Si-based alloy via chemical vapor deposition (CVD) method in CH3SiCl3(MTS)-H2-Ar system at low temperature (900-1100 °C) under atmospheric pressure. The phase composition and surface morphology of encapsulated B4C particles were studied using X-ray diffraction (XRD) , scanning electron microscopy (SEM) plus energy dispersive spectrometer (EDS), respectively. It was found that the deposition temperatures have a significant effect on microstructure and composition of deposited coating. The studies on surface morphology revealed that spine-like crystals, nodular growth, island structure and whiskers can be deposited onto the surface of boron carbide particles. When deposited at 900-1000 °C,the coatings is Si + SiC co-deposition, while pure SiC coatings form only at as high deposition temperature at 1050 °Cand 1100 °C.


2017 ◽  
Vol 31 (23) ◽  
pp. 1750174 ◽  
Author(s):  
A. Alexandar ◽  
A. Lakshmanan ◽  
S. Sakthy Priya ◽  
P. Surendran ◽  
P. Rameshkumar

Nonlinear optical single crystals of L-lysine p-nitrophenolate monohydrate (LLPNP) were grown in aqueous solution by the slow evaporation solution technique (SEST). The grown crystals were subjected to powder X-ray diffraction analysis, (PXRD) and it was found that the title compound was crystallized in the orthorhombic crystal system with noncentrosymmetric space group of [Formula: see text]212121. The vibrational frequencies of various functional groups present in the crystal were analyzed using the FTIR spectrum with a wavenumber range between 450 cm[Formula: see text] and 4000 cm[Formula: see text]. The microhardness analysis of the sample revealed that the crystal belongs to the soft material category. Piezoelectric analysis was performed to measure the value of the piezoelectric (d[Formula: see text]) coefficient. Blue light emission of the material was confirmed using the photoluminescence spectrum. Thermal stability of the grown crystal was analyzed using a melting point apparatus and it was found that the LLPNP is stable upto 175[Formula: see text]C. Etching analysis was performed at various durations, in order to identify the surface properties of the LLPNP crystal.


2019 ◽  
Author(s):  
Minoru Maeda ◽  
Dipak Patel, Dr. ◽  
Hiroaki Kumakura, Dr. ◽  
Gen Nishijima, Dr. ◽  
Akiyoshi Matsumoto, Dr. ◽  
...  

1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 4
Author(s):  
Hadj Bellagra ◽  
Oksana Nyhmatullina ◽  
Yuri Kogut ◽  
Halyna Myronchuk ◽  
Lyudmyla Piskach

Quaternary semiconductor materials of the Pb4Ga4GeS(Se)12 composition have attracted the attention of researchers due to their possible use as active elements of optoelectronics and nonlinear optics. The Pb4Ga4GeS(Se)12 phases belong to the solid solution ranges of the Pb3Ga2GeS(Se)8 compounds which form in the quasi-ternary systems PbS(Se)−Ga2S(Se)3−GeS(Se)2 at the cross of the PbGa2S(Se)4−Pb2GeS(Se)4 and PbS(Se)−PbGa2GeS(Se)6 sections. The quaternary sulfide melts congruently at 943 K. The crystallization of the Pb4Ga4GeSe12 phase is associated with the ternary peritectic process Lp + PbSe ↔ PbGa2S4 + Pb3Ga2GeSe8 at 868 K. For the single crystal studies, Pb4Ga4GeS(Se)12 were pre-synthesized by co-melting high-purity elements. The X-ray diffraction results confirm that these compounds possess non-centrosymmetric crystal structure (tetragonal symmetry, space group P–421c). The crystals were grown by the vertical Bridgman method in a two-zone furnace. The starting composition was stoichiometric for Pb4Ga4GeS12, and the solution-melt method was used for the selenide Pb4Ga4GeSe12. The obtained value of the bandgap energy for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals is 1.86 and 2.28 eV, respectively. Experimental measurements of the spectral distribution of photoconductivity for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals exhibit the presence of two spectral maxima. The first lies in the region of 570 (2.17 eV) and 680 nm (1.82 eV), respectively, and matches the optical bandgap estimates well. The locations of the admixture maxima at about 1030 (1.20 eV) and 1340 nm (0.92 eV), respectively, agree satisfactorily with the calculated energy positions of the defects vs. and VSe.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Sanjay Kumar ◽  
Soumen Singha ◽  
Rajkumar Jana ◽  
RITUPARNA MONDAL ◽  
Partha Pratim Bag ◽  
...  

Herein, we report the crystal structure, supramolecular structure, electronic transport property and optoelectronic behaviour of a co-crystal made of tetrabromoterephthalic acid (TBTA) and quinoxaline (QUIN) (1:1). The sample has been...


2021 ◽  
Vol 186 ◽  
pp. 109025
Author(s):  
João Humberto Dias Campos ◽  
Meiry Edivirges Alvarenga ◽  
Maykon Alves Lemes ◽  
José Antônio do Nascimento Neto ◽  
Freddy Fernandes Guimarães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document