scholarly journals Sorption And Physicochemical Properties of A Phosphorylated Mercerised Cotton Cellulose

Author(s):  
Roman Solovov ◽  
Anfisa Yu. Perevoznikova ◽  
Alexander F. Seliverstvov ◽  
Alexey V. Shapagin ◽  
Alexander M. Fedoseev ◽  
...  

Abstract A process of a mercerised cotton cellulose sample phosphorylation has been investigated. After oxidation a phosphorus content was determined by spectrophotometric analysis and it was in a range of 0.179 to 0.950 mmol g–1. A significant decrease in the tensile strength of the sample was found upon an increase of phosphoric acid concentration in a phosphorylating solution. Phosphorylated mercerized fabric contents more phosphorous as unmercerized fabric in 3 times. The sorption properties of phosphorylated cotton cellulose in aqueous solution containing Cu2+ were characterized. The maximum of static exchange capacity was found to be 1.48 ± 0.11 mmol g–1 for phosphorylated cotton with content 0.898 ± 0.090 mmol g–1 of phosphorus. The sorption of Cu2+ by single phosphorus-containing group occurs for samples with not exceeding 0.80 mmol g–1 of phosphorus. The preliminary studies of uranium(VI) micro quantities of radionuclides 241Am, 233U and 239Pu sorption from aqueous solution with phosphorylated textile demonstrated the high efficiency.

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3756
Author(s):  
Roman Solovov ◽  
Anfisa Perevoznikova ◽  
Alexandr Seliverstvov ◽  
Alexey Shapagin ◽  
Alexandr Fedoseev ◽  
...  

A process of phosphorylation for a mercerized cotton kersey fabric was investigated. After wet oxidation, the phosphorus content in each sample was determined by spectrophotometric analysis. The range was 0.179 to 0.950 mmol g–1. A significant decrease in the tensile strength of samples resulted from an increase of phosphoric acid concentration in the phosphorylating solution. The mercerization has a positive impact on the process of phosphorylation, as the phosphorus content was found to be three times higher in the samples that underwent mercerization. The sorption properties of phosphorylated cotton fabric were studied using the Cu2+ sorption process as a reference. The value of the static exchange capacity for the phosphorylated fabric was determined to reach its maximum when the concentration of the H3PO4 in the phosphorylating solution was 1.40 M, and was found to be 1.48 ± 0.11 mmol g–1 with the phosphorus content equal to 0.898 ± 0.090 mmol g–1. The sorption of Cu2+ by a single phosphorus-containing group occurred for samples with phosphorus content not exceeding 0.80 mmol g–1. The preliminary studies of micro-quantities of 241Am, 233U, and 239Pu radionuclide sorption from aqueous solutions with phosphorylated textile demonstrated the high efficiency.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2020 ◽  
pp. 15-20
Author(s):  
Ersin Yucel ◽  
Mine Yucel

In this study, the usage of the peppermint (Mentha piperita) for extracting the metal ions [Mg (II), Cr (II), Ni (II), Cu (II), Zn (II), Cd (II), Pb (II)] that exist at water was investigated. In order to analyze the stability properties, Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms were used at removing the metal ions and the highest correlation coefficients (R2) were obtained at Langmuir isotherm. Therefore, it is seen that the Langmuir model is more proper than the Freundlich model. However, it was found that the correlation coefficients of removing Ni and Cd is higher at Freundlich model than Langmuir and low at Dubinin-Radushkevich isotherm. It is established that the biosorption amount increase depends on the increase of biosorbent and it can be achieved high efficiency (95%) even with small amount (0.6 mg, peppermint extract) at lead ions. It is also determined that the peppermint extracted that is used at this study shows high biosorption capacity for metal ions and can be used for immobilization of metals from polluted areas.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 953-959
Author(s):  
Chengguang Chen ◽  
Muqing Qiu

A biochar-supported nanoscale ferrous sulfide composite was prepared and applied for the treatment of Pb(ii) ions in aqueous solution.


2017 ◽  
Vol 76 (6) ◽  
pp. 1466-1473 ◽  
Author(s):  
M. H. Salmani ◽  
M. Mokhtari ◽  
Z. Raeisi ◽  
M. H. Ehrampoush ◽  
H. A. Sadeghian

Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2′-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.


2021 ◽  
Author(s):  
Ammal Abukari ◽  
Ziblim Abukari Imoro ◽  
Abubakari Zarouk Imoro ◽  
Abudu Ballu Duwiejuah

Conversion of agricultural wastes into eco-friendly and low cost biochar is not only a smart recycling strategy but a panacea to environmental pollution management. Agricultural wastes biochar can be an effective alternative technique for controlling contaminants due to its low cost, high-efficiency, simple to use, ecological sustainability and reliability in terms of public safety. Biochars have made substantial breakthroughs in reducing greenhouse gases emissions, reducing soil nutrient leaching, sequester atmospheric carbon into the soil, increasing agricultural productivity, and reducing bioavailability of environmental contaminants. Recent advances in the understanding of biochars warrant a proper scientific evaluation of the relationship between its properties and impact on soil properties, environmental pollutant remediation, plant growth, yield, and resistance to biotic and abiotic stresses. The main factors controlling biochar properties include the nature of feedstock, heat transfer rate, residence time and pyrolysis temperature. Biochar efficacy in pollutants management largely depends on its elemental composition, ion-exchange capacity, pore size distribution and surface area, which vary with the nature of feedstock, preparation conditions and procedures. The chapter explored the possibility of using biochar from agricultural wastes as a suitable alternative for the remediation of environmental pollutants, soil conditioning and the long-term biochar application in the environment.


2021 ◽  
Vol 8 (1) ◽  
pp. 20218111
Author(s):  
V. A. Snegirev ◽  
V. M. Yurk

The study examines the technology of processing fly ash from Troitskaya power plant for the production of zeolite. The paper presents the results of laboratory studies evaluating the suitability of fly ash from Troitskaya power plant for the production of zeolites and the development of the zeolite production process. Fly ash contains a small amount of heavy metals that can complicate processing, but contains a large amount of silicon oxide. The technology consists of high-temperature alkaline activation of fly ash and hydrochemical synthesis. The resulting powder has a specific surface area of 89.7 m2/g, determined by the BET method, and an average pore diameter of 0.345 μm. The static exchange capacity was 220 mg/g.


ChemSusChem ◽  
2018 ◽  
Vol 11 (18) ◽  
pp. 3208-3214 ◽  
Author(s):  
Shi'ang Li ◽  
Yan Zhang ◽  
Rongfeng Tang ◽  
Xiaomin Wang ◽  
Tong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document