scholarly journals The development of technology for production of zeolites from fly-ash from Troitskaya power plant

2021 ◽  
Vol 8 (1) ◽  
pp. 20218111
Author(s):  
V. A. Snegirev ◽  
V. M. Yurk

The study examines the technology of processing fly ash from Troitskaya power plant for the production of zeolite. The paper presents the results of laboratory studies evaluating the suitability of fly ash from Troitskaya power plant for the production of zeolites and the development of the zeolite production process. Fly ash contains a small amount of heavy metals that can complicate processing, but contains a large amount of silicon oxide. The technology consists of high-temperature alkaline activation of fly ash and hydrochemical synthesis. The resulting powder has a specific surface area of 89.7 m2/g, determined by the BET method, and an average pore diameter of 0.345 μm. The static exchange capacity was 220 mg/g.

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1027
Author(s):  
Zdzisław Adamczyk ◽  
Joanna Komorek ◽  
Barbara Białecka ◽  
Joanna Całus-Moszko ◽  
Agnieszka Klupa

The paper presents the characteristics of products annealing at the temperatures of 2400 and 3000 °C of unburned carbon from coal fly ash in terms of its possible use as a starting material in the graphitization process. An amorphous substance (organic substance) with an admixture of some minerals has been found in samples subjected to graphitization. However, the graphite phase is dominant in products subjected to graphitization. Studies have also shown a diverse grain morphology in individual samples. The presence of plate-shaped and tube-shaped grains was found. As the graphitization temperature of the starting material increases (2400 and 3000 °C), the specific surface area in the graphitization products decreases. The total pore volume in the samples after the graphitization process was significantly lower than the pore volume of active carbons produced from other unburned carbon. Average pore diameter is similar to the pore diameter in active carbons. The reflectance value of the matrix for the sample graphitized at 3000 °C is characteristic for graphite. Unburned carbon from Polish fly ash can be used as the starting material for graphitization.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 774
Author(s):  
Peng Liu ◽  
Ying Chen ◽  
Zhiwu Yu

The effects of the admixtures, erosion age, concentration of sulfate solution, and erosion form of sulfate attack on the mechanical properties of mortar were investigated. Simultaneously, the microstructure, pore characteristics, kinds and morphologies of erosion products of mortar before and after sulfate attacks were performed by Mercury Intrusion Porosimetry (MIP), Environment Scanning Electronic Microscope and Energy Dispersive Spectrometer (ESEM-EDS). In addition, the crystal form and morphology characteristics of crystallization on mortar surfaces attacked by partial immersion form were studied. The results showed that the compressive and flexural strengths of mortar attacked by sulfate for four months decreased with the increase of the replacement of cement with fly ash, and the corresponding strength of mortar containing slag first increased and then decreased. The admixtures can improve the microstructure and mechanical properties of mortar within the replacement ratio of 10%. Although the change laws of the mortar specimens containing different admixtures were similar, the mortar containing slag had an excellent sulfate resistance under the same condition. Compared with the complete immersion form, the strength variation of the mortar containing fly ash attacked by semi-immersion form was less. The porosity and average pore diameter of mortar attacked by sulfate for four months increased, and the percentage of micropore with the pore diameter less than 200 nm increased. Plenty of rod-like and plate-like erosion products were generated in mortar attacked by a sulfate solution with a high concentration. A larger number of fibrous and flocculent crystallization covered the mortar’s surface containing fly ash, but it was a granular and dense crystallization formed on the mortar’s surface containing slag. Much dendritic erosion product was generated in the mortar attacked by semi-immersion form, and ESEM-EDS analysis revealed that it may be scawtite, spurrite, and residue of the decomposed calcium silicate hydrate (CSH) in the inner mortar; however, the crystallization sodium sulfate was crystallized on mortar surface.


2021 ◽  
pp. 45-54
Author(s):  
Nadezhda Mikhaylovna Mikova ◽  
Vladimir Aleksandrovich Levdansky ◽  
Yelena Valentinovna Mazurova ◽  
Boris Nikolayevich Kuznecov

Organic xerogels based on lignin and tannins isolated from pine bark and wood were first obtained by condensation with formaldehyde and furfuryl alcohol in the presence of hydrochloric acid. The use of pine sulfated ethanol lignin made it possible for the first time to obtain sulfur-containing (up to 1.3% wt.) lignin-(tannin)-formaldehyde and lignin-(tannin)-furfuryl xerogels. The density of the obtained gels increases with the addition of tannins to lignin and varies in the range 0.13–0.39 g/cm3. Xerogels synthesized by condensation with furfuryl alcohol are stronger than those obtained using formaldehyde. The presence of sulfur in xerogels was confirmed by elemental and chemical analysis and IR spectroscopy. It was shown by scanning electron microscopy, that lignin-formaldehyde xerogels are formed from large polymer chains, consisting of interconnected aggregates of micron-sized particles and have large pores. The addition of tannins to the polycondensation system is accompanied by the formation of a more compact spatially crosslinked gel structure. BET method showed that all xerogels have low porosity, and lignin-furfuryl samples have a larger average pore diameter (7.2–14.5 nm) compared to lignin-formaldehyde samples (3.03–6.80 nm).


2017 ◽  
Vol 753 ◽  
pp. 254-258 ◽  
Author(s):  
Dan Fu

In this paper, the properties of fly ash were investigated. The particle size distribution, the fourier transform infrared spectroscopy (FTIR), the morphology, the surface area, pore volume, average pore diameter and the modification methods of fly ash were examined. The study indicated that the particle size of fly ash was about 0.2 µm, the particle shape was irregular. FTIR spectrums of fly ash modified were basically the same and the functional groups of fly ash were rarely. SEM of fly ash showed that the particles were similar to lamellar structure and the particle shape was irregular. The BET specific surface area of fly ash modified by H2O2 was 41.63 m2 /g. The fly ash of modified by H2O2 had better adsorption performance than other modified methods. The modification can effectively improve the adsorption performance of fly ash. The result indicated that the fly ash as adsorbent for wastewater treatment was feasible.


2014 ◽  
Vol 955-959 ◽  
pp. 116-119
Author(s):  
Yang Zhou ◽  
Bin Yan ◽  
Zeng Yin Zhu ◽  
Zhong Shen ◽  
Hai Suo Wu

Two weak acid resins (WT-1, WT-2) with different pore structures were prepared through suspension polymerization from methyl acrylate (MA) and divinylbenzene (DVB). Cu2+ was employed as the adsorbate and bath experiments were carried out to investigate the adsorption performance of the two resins. The addition of porogen (toluene) enlarged the exchange capacity, specific surface area and average pore diameter of resins, leading to the faster adsorption rate and higher maximum adsorption capacity. The adsorption capacity increased 3.5~28.5% with the rise of porogen/monomer ratio from 0 to 30%. This work shows the porogen influence on the adsorption kinetics and thermodynamics of weak acid resins.


2013 ◽  
Vol 12 (2) ◽  
pp. 337-342 ◽  
Author(s):  
Firuta Goga ◽  
Roxana Dudric ◽  
Calin Cormos ◽  
Florica Imre ◽  
Liliana Bizo ◽  
...  

2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2018 ◽  
Vol 69 (8) ◽  
pp. 2040-2044
Author(s):  
Georgeta Velciu ◽  
Virgil Marinescu ◽  
Adriana Moanta ◽  
Ladislau Radermacher ◽  
Adriana Mariana Bors

The influence of fly ash adittion (90 % fraction [ 100 mm) on the cement mortar characteristics was studied. The XRD, XRF, SEM and FTIR determinations indicated that fly ash used has a hollow microstructure of microsphere and cenosphere whose total content in SiO2, Al2O3 and Fe2O3 is 88.63 % and that of CaO and MgO of 8.55 %. The mechanical, thermal and dielectric determinations made on mortar samples with content of fly ash in the 0-40 % range have highlighted fact that the mechanical strength of cement mortars is maximal at 20 %, the increase in fly ash content leads to a decrease in relative density and thermal conductivity as well as and to increased dielectric losses tgd.


2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


Sign in / Sign up

Export Citation Format

Share Document