scholarly journals NtrC, The Master Regulator Controls the Utilization of Alternative Nitrogen Sources in Pseudomonas Stutzeri A1501

Author(s):  
Zhimin Yang ◽  
Qin Li ◽  
Yongliang Yan ◽  
Xiubin Ke ◽  
Yueyue Han ◽  
...  

Abstract Pseudomonas stutzeri A1501 is the model strain for studying associative nitrogen fixation and possesses the nitrogen regulatory NtrC protein in the core genome. Nitrogen source is one of the important factors affecting the efficiency of biological nitrogen fixation in the natural environment. However, the regulation of NtrC in nitrogen metabolism of P. stutzeri A1501 is not clear. In this work, phenotypic analysis of the ntrC mutant characterized the roles of NtrC for the nitrogen metabolism and oxidative stress response of P. stutzeri A1501. To systematically identify NtrC-controlled gene expression, RNA-seq was performed to further analyze the gene expression differences between the wild type strain and the ∆ntrC mutant under nitrogen fixation conditions. A total of 1431 genes were found to be significantly altered by the ntrC deletion, among which 147 associative genes had NtrC-binding sites, and pathways for nitrogen fixation regulation, the acquisition and catabolism of nitrogenous compounds and nitrate assimilation were particularly discussed. Furthermore, the oxidative stress-related gene (katB), upregulated by the ntrC deletion, was suggested to be the potential target gene of NtrC, underlining the importance of NtrC to nitrogenase protection against oxygen damage. Based on these findings, we propose that NtrC is a high-ranked element in the regulatory network of P. stutzeri A1501 that controls a variety of nitrogen metabolic and oxidative stress responsive traits required for adaptation to complex rhizosphere environment.

Author(s):  
Zhimin Yang ◽  
Qin Li ◽  
Yongliang Yan ◽  
Xiubin Ke ◽  
Yueyue Han ◽  
...  

AbstractPseudomonas stutzeri A1501 is a model strain used to study associative nitrogen fixation, and it possesses the nitrogen regulatory NtrC protein in the core genome. Nitrogen sources represent one of the important factors affecting the efficiency of biological nitrogen fixation in the natural environment. However, the regulation of NtrC during nitrogen metabolism in P. stutzeri A1501 has not been clarified. In this work, a phenotypic analysis of the ntrC mutant characterized the roles of NtrC in nitrogen metabolism and the oxidative stress response of P. stutzeri A1501. To systematically identify NtrC-controlled gene expression, RNA-seq was performed to further analyse the gene expression differences between the wild-type strain and the ∆ntrC mutant under nitrogen fixation conditions. A total of 1431 genes were found to be significantly altered by ntrC deletion, among which 147 associative genes had NtrC-binding sites, and the pathways for nitrogen fixation regulation, nitrogenous compound acquisition and catabolism and nitrate assimilation were discussed. Furthermore, the oxidative stress-related gene (katB), which was upregulated by ntrC deletion, was suggested to be a potential target gene of NtrC, thus highlighting the importance of NtrC in nitrogenase protection against oxygen damage. Based on these findings, we propose that NtrC is a high-ranking element in the regulatory network of P. stutzeri A1501 that controls a variety of nitrogen metabolic and oxidative stress responsive traits required for adaptation to complex rhizosphere environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noha H. Habashy ◽  
Ahmad S. Kodous ◽  
Marwa M. Abu-Serie

AbstractCarbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1β, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28777 ◽  
Author(s):  
Mary C. Vázquez ◽  
Talía del Pozo ◽  
Fermín A. Robledo ◽  
Gonzalo Carrasco ◽  
Leonardo Pavez ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3349 ◽  
Author(s):  
Jin Namkoong ◽  
Dale Kern ◽  
Helen Knaggs

Since the skin is the major protective barrier of the body, it is affected by intrinsic and extrinsic factors. Environmental influences such as ultraviolet (UV) irradiation, pollution or dry/cold air are involved in the generation of radical oxygen species (ROS) and impact skin aging and dermal health. Assessment of human skin gene expression and other biomarkers including epigenetic factors are used to evaluate the biological/molecular activities of key compounds in cosmetic formulas. The objective of this study was to quantify human gene expression when epidermal full-thickness skin equivalents were exposed to: (a) a mixture of betaine, pentylene glycol, Saccharomyces cerevisiae and Rhodiola rosea root extract (BlendE) for antioxidant, skin barrier function and oxidative stress (with hydrogen peroxide challenge); and (b) a mixture of Narcissus tazetta bulb extract and Schisandra chinensis fruit extract (BlendIP) for various biomarkers and microRNA analysis. For BlendE, several antioxidants, protective oxidative stress biomarkers and many skin barrier function parameters were significantly increased. When BlendE was evaluated, the negative impact of the hydrogen peroxide was significantly reduced for the matrix metalloproteinases (MMP 3 and MMP 12), the skin aging and oxidative stress biomarkers, namely FBN2, ANXA1 and HGF. When BlendIP was tested for cell proliferation and dermal structural components to enhance the integrity of the skin around the eyes: 8 growth factors, 7 signaling, 7 structural/barrier function and 7 oxidative stress biomarkers were significantly increased. Finally, when BlendIP was tested via real-time RT-PCR for microRNA expression: miR-146a, miR-22, miR155, miR16 and miR21 were all significantly increased over control levels. Therefore, human skin gene expression studies are important tools to assess active ingredient compounds such as plant extract blends to advance dermal hypotheses toward validating cosmetic formulations with botanical molecules.


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1871
Author(s):  
Karolina Chodkowska ◽  
Anna Ciecierska ◽  
Kinga Majchrzak ◽  
Piotr Ostaszewski ◽  
Tomasz Sadkowski

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Renal Failure ◽  
2015 ◽  
Vol 37 (2) ◽  
pp. 192-197 ◽  
Author(s):  
Aydın Güçlü ◽  
Nilüfer Yonguç ◽  
Yavuz Dodurga ◽  
Gülşah Gündoğdu ◽  
Zuhal Güçlü ◽  
...  

2017 ◽  
Vol 53 (2) ◽  
pp. 118 ◽  
Author(s):  
Vahid Khanjarsim ◽  
Jamshid Karimi ◽  
Iraj Khodadadi ◽  
Adel Mohammadalipour ◽  
Mohammad Taghi Goodarzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document