RNF185-AS1 Promotes Hepatocellular Carcinoma Progression Through Targeting miR-221-5p/integrin β5 Axis

2020 ◽  
Author(s):  
Chunmei Huang ◽  
Ke Li ◽  
Rongfu Huang ◽  
Jianhua Zhu ◽  
Jiayao Yang

Abstract Background: Recently, long noncoding RNAs (lncRNAs) have been reported to play important role in pathogenesis of various cancers. However, the function of RNF185-AS1 in hepatocellular carcinoma (HCC) metastasis has not been well investigated. The present study aims to explore the role and mechanism of RNF185-AS1 in hepatocellular carcinoma metastasis. Methods: The RNF185-AS1 expression in HCC cells and tissues was measured by quantitative real‐time polymerase chain reaction (qRT-PCR). The functional effects of RNF185-AS1 on tumor cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were assessed by Cell Counting Kit-8 (CCK8) assay, colony formation assay, transwell assay and Western blot. The luciferase reporters assay, RNA-binding protein immunoprecipitation assay, qRT-PCR and Western blot were performed to explore and confirm the interaction between RNF185-AS1 and miR-221-5p and integrin β5. The role of RNF185-AS1 in tumor progression was explored through in vivo experiments.Results: RNF185-AS1 was highly expressed in HCC tissues and cell lines. High levels of RNF185-AS1 was correlated with advanced TNM stage, distant metastasis and a poorer overall survival rate. RNF185-AS1 knockdown inhibited cell proliferation, migration, invasion and EMT. Additionally, RNF185-AS1 acted as a sponge for miR-221-5p and integrin β5 was identified as a target gene of miR-221-5p. Rescue assays showed that miR-221-5p inhibitor or integrin β5 overexpression rescued the function of RNF185-AS1 knockdown on cell proliferation, migration, invasion and EMT. Moreover, we found that RNF185-AS1 knockdown inhibited tumor metastases in xenograft tumor mouse model. Conclusion: Our findings demonstrated that RNF185-AS1 promoted cell EMT and migration by regulating miR-221-5p/integrin β5 axis in HCC.

2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.


2020 ◽  
Author(s):  
Dan Yin ◽  
Zhi-Qiang Hu ◽  
Chu-Bin Luo ◽  
Xiao-Yi Wang ◽  
Hao-Yang Xin ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have been found to be functionally associated with cancer development and progression. Although copy number variations (CNVs) are common in hepatocellular carcinoma (HCC), little is known about how CNVs in lncRNAs affect HCC progression and recurrence.Methods: We analyzed the whole genome sequencing (WGS) data of matched cancerous and non-cancerous liver samples from 49 patients with HCC to identify lncRNAs with CNVs. The results were validated in another cohort of 238 paired HCC and non-tumor samples by TaqMan copy number assay. Kaplan-Meier analysis and the log-rank test were performed to determine the prognostic value of CNVs in lincRNAs. Loss- and gain-of-function studies were conducted to determine the biological functions of LINC01133 in vitro and in vivo. The competing endogenous RNAs (ceRNAs) mechanism was clarified by microRNA sequencing (miR-seq), quantitative real-time PCR (qRT-PCR), western blot, and dual-luciferase reporter analyses. The protein binding mechanism was confirmed by RNA pull-down, RNA immunoprecipitation (RIP), qRT-PCR, and western blot analyses.Results: Genomic copy number of LINC01133 was increased in HCC, which is positively related with the elevated expression of LINC01133. Increased copy number of LINC01133 predicted the poor prognosis in HCC patients. LINC01133 overexpression promoted proliferation, colony formation, migration, and invasion in vitro, and facilitated tumor growth and lung metastasis in vivo, whereas LINC01133 knockdown had the opposite effects. Mechanistically, LINC01133 acted as a sponge of miR-199a-5p, resulting in enhanced expression of SNAI1, which induced epithelial-mesenchymal transition (EMT) in HCC cells. In addition, LINC01133 interacted with Annexin A2 (ANXA2) to activate ANXA2/STAT3 signaling pathway.Conclusions: LINC01133 promotes HCC progression by sponging miR-199a-5p and interacting with ANXA2. LINC01133 CNV gain is predictive of poor prognosis in HCC patients undergoing curative resection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yibin Zhao ◽  
Hongyi Zhou ◽  
Jie Shen ◽  
Shaohui Yang ◽  
Ke Deng ◽  
...  

BackgroundDysregulated microRNAs (miRNAs) are common in human cancer and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, this study aimed to evaluate the expression and biological function of miR-1236-3p in colon cancer.MethodsThis study screened the miRNA in normal and colon cancer tissues through array analysis. In addition, quantitative Reverse Transcription–Polymerase Chain Reaction (qRT-PCR) analysis was performed to validate the expression of miR-1236-3p in normal and tumor tissues from colon cancer patients and cancer cell lines. Online predicting algorithms and luciferase reporter assays were also employed to confirm Doublecortin Like Kinase 3 (DCLK3) was the target for miR-1236-3p. Moreover, the impact of miR-1236-3p on the progression of colon cancer was evaluated in vitro and in vivo. Western blotting and qRT-PCR were also performed to investigate the interactions between miR-1236-3p and DCLK3.ResultsMiR-1236-3p was significantly downregulated in colon cancer tissues and its expression was associated with the TNM stage and metastasis of colon. In addition, the in vitro and in vivo experiments showed that miR-1236-3p significantly promoted cancer cell apoptosis and inhibited the proliferation, invasion, and migration of cancer cells. The results also showed that miR-1236-3p hindered Epithelial–mesenchymal Transition (EMT) by targeting DCLK3. Moreover, the expression of DCLK3 mediated the effects of miR-1236-3p on the progression of cancer.ConclusionsMiR-1236-3p functions as a tumor suppressor in colon cancer by targeting DCLK3 and is therefore a promising therapeutic target for colon cancer.


2021 ◽  
Author(s):  
Yuhong Liu ◽  
Tao Lu ◽  
Min Pan ◽  
Dan Yu ◽  
Yanshi Li ◽  
...  

Abstract Background: Hypopharyngeal squamous cell carcinoma (HSCC) has the worst prognosis among head and neck tumours, and Lymph node (LN) metastasis mainly accounts for the poor prognosis. RBM24 (RNA Binding Motif Protein 24) regulates target RNA as an RNA binding protein involved in several cancers. However, its role in HSCC remains completely unknown. Here we attempt to explore the effects of RBM24 on HSCC. Methods: RNA sequencing was conducted to find the differentially expressed genes in tumour tissues from HSCC patients with LN metastasis and without LN metastasis in our previous study. Expression of RBM24 in HSCC tissues was analyzed by qRT-PCR, western blot and immunohistochemistry. Cell proliferation was tested by CCK8 assay as well as Colony formation analysis. Cell migration and invasion capacity were estimated by transwell assay. The wound healing assay was also carried out to evaluate the motility of FaDu cells. QRT-PCR, western blot and immunofluorescence assays were conducted to detect the process of EMT. A popliteal lymph node metastasis model was constructed to explore the effect of RBM24 on HSCC in vivo.Results: RBM24 was remarkably down-regulated in HSCC patients with LN metastasis, and low expression of RBM24 was inextricably linked to the poor prognosis. Knockdown of RBM24 facilitated the proliferation, migration and invasion of RBM24, whereas overexpression of RBM24 showed the opposite effects and suppressed the epithelial-mesenchymal-transition (EMT) process. Overexpression of Twist1 could reverse the inhibitory effects of RBM24 on motility and invasion of FaDu cells. The inhibitory effects of RBM24 on tumour growth and lymphatic metastasis in HSCC were demonstrated by the in vivo experiment as well.Conclusions: These results indicated RBM24 was a suppressor gene and might inhibit EMT and LN metastasis in HSCC via regulating Twist1.


2017 ◽  
Vol 41 (4) ◽  
pp. 1584-1595 ◽  
Author(s):  
Tao Ye ◽  
Jing Xu ◽  
Ling Du ◽  
Wenhui Mo ◽  
Yiming Liang ◽  
...  

Background/Aims: Dysregulation of ubiquitin-associated protein 2-like (UBAP2L) has been reported in tumors, but its role in hepatocellular carcinoma (HCC) progression is unclear. Methods: The expression levels of UBAP2L in HCC tissues and HCC cell lines were detected by western blot and quantitative real-time (qRT) PCR. The effects of UBAP2L expression on HCC cell biological traits, including migration and invasion, were investigated by wound healing assay and matrigel transwell assay. Simultaneously, the expression of epithelial-mesenchymal transition (EMT) markers including E-cadherin, CK-18, N-cadherin, Vimentin, Claudin7 and the promoter activity of E-cadherin were detected by western blot and qRT-PCR. Subsequently, role of SNAIL1 in UBAP2L-mediated EMT and the mechanism underlying UBAP2L-mediated SNAIL1 expression were further investigated. Results: UBAP2L was overexpressed in human HCC tissues compared with peri-tumoral tissues. Downregulation of UBAP2L inhibited migration, invasion and the EMT in highly metastatic HCC cell lines. Furthermore, UBAP2L knockdown inhibited expression of the transcriptional repressor SNAIL1 and its ability to bind to the E-cadherin promoter via SMAD2 signaling pathway, which in turn resulted in increased E-cadherin expression. Additionally, bioinformatics analysis showed that expression of UBAP2L is correlated with poor prognosis in patients with HCC. Conclusions: UBAP2L plays a critical role in maintenance of the metastatic ability of HCC cells via SNAIL1 Regulation and is predictive of a poor clinical outcome.


Author(s):  
Yanhua Li ◽  
Xia Chen ◽  
Hong Lu

The gene solute carrier family 34 (sodium phosphate), member 2 (SLC34A2), is a member of the SLC34 family. Increasing evidence suggests that SLC34A2 is involved in the development of many human carcinomas. However, its role in hepatocellular carcinoma (HCC) is still unclear. Therefore, in this study we investigated the role of SLC34A2 in HCC and explored the underlying mechanism. We found that the expression of SLC34A2 is upregulated in HCC cell lines. Knockdown of SLC34A2 obviously inhibited HCC cell proliferation, migration/invasion, and the epithelial‐mesenchymal transition (EMT) phenotype. Furthermore, knockdown of SLC34A2 significantly inhibited the expression of phosphorylated PI3K and AKT in HCC cells. Taken together, these results suggest that knockdown of SLC34A2 inhibits proliferation and migration by suppressing activation of the PI3K/AKT signaling pathway in HCC cells, and SLC34A2 may be a potential therapeutic target for the treatment of HCC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Huojian Shen ◽  
Hongyi Zhu ◽  
Yuanwen Chen ◽  
Zhiyong Shen ◽  
Weiqing Qiu ◽  
...  

AbstractGastric cancer (GC) is a common type of tumor that is characterized with high metastatic rate. In recent years, increasing studies have indicated that lncRNAs are involved in the regulation on cancer cell proliferation and migration. However, the functional role of long intergenic non-protein coding RNA 1559 (LINC01559) in GC is still unclear. In this study, we applied quantitative real-time polymerase chain reaction (RT-qPCR) and examined that LINC01559 expression was significantly enhanced in GC cells. Functional assays such as EdU, colony formation, JC-1 and transwell assays displayed that silencing LINC01559 inhibited cell proliferation and migration while promoted cell apoptosis in GC. Besides, western blot analysis and immunofluorescence assays examined the expression of factors related to epithelial-mesenchymal transition (EMT) and indicated that EMT process was blocked by LINC01559 knockdown in GC cells. Besides, LINC01559 silencing inhibited tumor growth in vivo. In addition, Chromatin immunoprecipitation (ChIP) assays demonstrated that zinc finger E-box binding homeobox 1 (ZEB1) served as a transcription factor to combine with LINC01559 promoter and activated the expression of LINC01559 in GC cells. In return, LINC01559 recruited insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) to stabilize ZEB1 mRNA to up-regulate ZEB1 in GC cells. In short, the findings in this research might provide a novel target for GC treatment.


2020 ◽  
Author(s):  
You Yu ◽  
Zhimeng Wang ◽  
Zan Huang ◽  
Xianying Tang ◽  
Wenhua Li

Abstract Background C1orf61 is a specific transcriptional activator that is highly up-regulated during weeks 4–9 of human embryogenesis, the period in which most organs develop. We have previously demonstrated that C1orf61 acts as a tumor activator in human hepatocellular carcinoma (HCC) tumorigenesis and metastasis. However, the underlying molecular mechanisms of tumor initiation and progression in HCC remain obscure. Methods In this study, we demonstrated that the pattern of C1orf61 expression was closely correlated with metastasis in liver cancer cells. Gene expression profiling analysis indicated that C1orf61 regulated diverse genes related to cell growth, migration, invasion and epithelial-mesenchymal transition (EMT). Results Results showed that C1orf61 promotes hepatocellular carcinoma metastasis by inducing cellular EMT in vivo and in vitro. Moreover, C1orf61-induced cellular EMT and migration are involved in the activation of the STAT3 and Akt cascade pathways. We also found that C1orf61 was associated with HBV infection-induced cell migration in HCC. In addition, C1orf61 expression improved the efficacy of the anticancer therapy sorafenib in HCC patients. For the first time, we report a regulatory pathway by which C1orf61 promoted cancer cell metastasis and regulated the therapeutic response to sorafenib. Conclusions These findings increased our understanding of the molecular events that regulate metastasis and treatment in HCC.


2021 ◽  
Vol 10 ◽  
Author(s):  
Rong Liang ◽  
Jinyan Zhang ◽  
Zhihui Liu ◽  
Ziyu Liu ◽  
Qian Li ◽  
...  

RNA-binding motif protein 8A (RBM8A) is abnormally overexpressed in hepatocellular carcinoma (HCC) and involved in the epithelial-mesenchymal transition (EMT). The EMT plays an important role in the development of drug resistance, suggesting that RBM8A may be involved in the regulation of oxaliplatin (OXA) resistance in HCC. Here we examined the potential involvement of RBM8A and its downstream pathways in OXA resistance using in vitro and in vivo models. RBM8A overexpression induced the EMT in OXA-resistant HCC cells, altering cell proliferation, apoptosis, migration, and invasion. Moreover, whole-genome microarrays combined with bioinformatics analysis revealed that RBM8A has a wide range of transcriptional regulatory capabilities in OXA-resistant HCC, including the ability to regulate several important tumor-related signaling pathways. In particular, histone deacetylase 9 (HDAC9) emerged as an important mediator of RBM8A activity related to OXA resistance. These data suggest that RBM8A and its related regulatory pathways represent potential markers of OXA resistance and therapeutic targets in HCC.


Sign in / Sign up

Export Citation Format

Share Document