scholarly journals Exploring farmers’ perception on climate-induced events and adaptation practices to protect crop production and livestock farming in Haor area of northeastern Bangladesh

Author(s):  
Tasneem Chowdhury Fahim ◽  
Bivuti Bhushan Sikder

Abstract Bangladesh is confronting terrible impacts of climate change on agriculture across the country, especially in the low-lying area like- Haor, coastal region, and islands. This behavioral study (N = 320) examines the perception and knowledge of farmers on climate-induced events and experiences, and explores the adaptation practices they adopt to protect crop production and livestock farming from the impact of climate change in the Northeastern Haor area of the country. Using triangulation method, it is detected that farmers of the study area have erroneous idea on climate change and the causes of frequent climate extremes. Study results show that respondents’ perception and experiences on climate-induced event are verified positively with the historical trend and time-series analysis of climate indicators as well as with the findings of researchers using PRA tools and techniques. This study explores the traditional and systematic adaptation approaches of farmers which are practiced in individual or community level. The rationale of each of the approach from respondents’ side is also analyzed in the study. It is statistically tested using chi-square that some of the scientific and systematic adaptation options for crop production is predominantly influenced by the educational qualifications of the respondents. The study reveals that lack of proper information prevents subsistence farmers to find the most effective adaptation pathways.

2019 ◽  
Vol 7 (4) ◽  
pp. 57
Author(s):  
Ishita Shahid Sams

The aim of this study is to explore the gender variation of the impact of climate change induced migration. This paper highlights the gender dimensions of climate change induced migration where gender is a vital element for determining vulnerability to climate change which influences the subsequent migration. Actually, the impacts of climate change induced natural disasters are not gender neutral because the experiences, needs and priorities of the climate migrants are varied by gender roles and position. In this research, we explore the socioeconomic impacts of the climate migrants on gender from the evidence of the southwest coastal women and men of Bangladesh. The qualitative data were collected from the cyclone-affected migrants who were migrated internally from the disaster-prone southwest coastal region and lived in the city slums of Khulna in Bangladesh. This study is described the gender differentiation between women and men in case of climate change induced migration according to social, economical, ecological, organizational, occupational, educational and physical aspects which tend to be highly gendered. The study results show that among climate migrants, women are more vulnerable than men due to their socioeconomic condition and gender discrimination in the patriarchal society of Bangladesh who are likely to be poorer, less educated, have a lower social status and have limited access to and control over natural resources.


Author(s):  
J. Macholdt ◽  
J. Glerup Gyldengren ◽  
E. Diamantopoulos ◽  
M. E. Styczen

Abstract One of the major challenges in agriculture is how climate change influences crop production, for different environmental (soil type, topography, groundwater depth, etc.) and agronomic management conditions. Through systems modelling, this study aims to quantify the impact of future climate on yield risk of winter wheat for two common soil types of Eastern Denmark. The agro-ecosystem model DAISY was used to simulate arable, conventional cropping systems (CSs) and the study focused on the three main management factors: cropping sequence, usage of catch crops and cereal straw management. For the case region of Eastern Denmark, the future yield risk of wheat does not necessarily increase under climate change mainly due to lower water stress in the projections; rather, it depends on appropriate management and each CS design. Major management factors affecting the yield risk of wheat were N supply and the amount of organic material added during rotations. If a CS is characterized by straw removal and no catch crop within the rotation, an increased wheat yield risk must be expected in the future. In contrast, more favourable CSs, including catch crops and straw incorporation, maintain their capacity and result in a decreasing yield risk over time. Higher soil organic matter content, higher net nitrogen mineralization rate and higher soil organic nitrogen content were the main underlying causes for these positive effects. Furthermore, the simulation results showed better N recycling and reduced nitrate leaching for the more favourable CSs, which provide benefits for environment-friendly and sustainable crop production.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


2021 ◽  
Author(s):  
Dessalegn Anshiso Sedebo ◽  
Gu‐Cheng Li ◽  
Kidane Assefa Abebe ◽  
Bekele Gebisa Etea ◽  
John Kojo Ahiapka ◽  
...  

2021 ◽  
Vol 4 (2) ◽  
pp. 159-169
Author(s):  
Eko Sumartono ◽  
Gita Mulyasari ◽  
Ketut Sukiyono

Bengkulu is said to be the center of the world's climate because of the influence of water conditions and the topography of the area where the rain cloud formation starts. The waters in Bengkulu Province become a meeting place for four ocean currents which eventually become an area where the evaporation process of forming rain clouds becomes the rainy or dry season and affects the world climate. Method to analyze descriptively, shows oldeman Classification and satellite rainfall estimation data is added. In relation to the Analysis of Potential Food Availability for the Coastal Areas of Bengkulu Province uses a quantifiable descriptive analysis method based. The results show that most are included in the Oldeman A1 climate zone, which means it is suitable for continuous rice but less production due to generally low radiation intensity throughout the year. In an effort to reduce or eliminate the impact of climate change on food crop production, it is necessary to suggest crop diversification, crop rotation, and the application of production enhancement technologies. Strategies in building food availability as a result of climate change are: First, develop food supplies originating from regional production and food reserves on a provincial scale. Second, Empowering small-scale food businesses which are the dominant characteristics of the agricultural economy, especially lowland rice and horticultural crops. Third, Increase technology dissemination and increase the capacity of farmers in adopting appropriate technology to increase crop productivity and business efficiency. Four, Promote the reduction of food loss through the use of food handling, processing and distribution technologies. 


Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 145 ◽  
Author(s):  
Viola Devasirvatham ◽  
Daniel Tan

Global climate change has caused severe crop yield losses worldwide and is endangering food security in the future. The impact of climate change on food production is high in Australia and globally. Climate change is projected to have a negative impact on crop production. Chickpea is a cool season legume crop mostly grown on residual soil moisture. High temperature and terminal drought are common in different regions of chickpea production with varying intensities and frequencies. Therefore, stable chickpea production will depend on the release of new cultivars with improved adaptation to major events such as drought and high temperature. Recent progress in chickpea breeding has increased the efficiency of assessing genetic diversity in germplasm collections. This review provides an overview of the integration of new approaches and tools into breeding programs and their impact on the development of stress tolerance in chickpea.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Francesca Marsili

<p>As consequence of global warming extreme weather events might become more frequent and severe across the globe. The evaluation of the impact of climate change on extremes is then a crucial issue for the resilience of infrastructures and buildings and is a key challenge for adaptation planning. In this paper, a suitable procedure for the estimation of future trends of climatic actions is presented starting from the output of regional climate models and taking into account the uncertainty in the model itself. In particular, the influence of climate change on ground snow loads is discussed in detail and the typical uncertainty range is determined applying an innovative algorithm for weather generation. Considering different greenhouse gasses emission scenarios, some results are presented for the Italian Mediterranean region proving the ability of the method to define factors of change for climate extremes also allowing a sound estimate of the uncertainty range associated with different models.</p>


Author(s):  
Navendu Chaudhary ◽  
Yogesh Pisolkar

Coastal Maharashtra is in transition. Growing coastal tourism and allied developmental activities along southern Maharashtra coast needs integration of various stakeholders to address the various issues and concerns. Integrated Coastal Zone Management (ICZM), which can cater to the needs of people while preserving the environment is thus need of the hour. The effects on natural resources, including water, will change the socioeconomic as well as the cultural fabric of coastal communities. This chapter explores a holistic approach to the developmental issues and the impact of climate change on the coastal region with specific cases of villages of Devbag and Tarkarli, coastal Maharashtra, India. It explores both physical and socioeconomic landscapes with special attention given to water resources in the context of changing dynamics of coastal communities and coastal tourism. The chapter discusses the issues and concerns of villages of Devbag and Tarkarli and proposes solutions for a sustainable development.


Author(s):  
Brett Whelan ◽  
James Taylor

Precision Agriculture (PA) is an approach to managing the variability in production agriculture in a more economic and environmentally efficient manner. It has been pioneered as a management tool in the grains industry, and while its development and uptake continues to grow amongst grain farmers worldwide, a broad range of other cropping industries have embraced the concept. This book explains general PA theory, identifies and describes essential tools and techniques, and includes practical examples from the grains industry. Readers will gain an understanding of the magnitude, spatial scale and seasonality of measurable variability in soil attributes, plant growth and environmental conditions. They will be introduced to the role of sensing systems in measuring crop, soil and environment variability, and discover how this variability may have a significant impact on crop production systems. Precision Agriculture for Grain Production Systems will empower crop and soil science students, agronomy and agricultural engineering students, as well as agronomic advisors and farmers to critically analyse the impact of observed variation in resources on crop production and management decisions.


Sign in / Sign up

Export Citation Format

Share Document