scholarly journals The Antibacterial and Anti-biofilm Activities of Two Thiazolidione Derivatives (H2-60 and H2-81) Against Clinical Enterococcus Faecium Strains

Author(s):  
Zhong Chen ◽  
Yanpeng Xiong ◽  
Yuanyuan Tang ◽  
Yuxi Zhao ◽  
Junwen Chen ◽  
...  

Abstract Background: Previous reports have demonstrated two thiazolidione derivatives (H2-60 and H2-81) can robustly inhibit the planktonic growth and biofilm formation of S. epidermidis and S. aureus by targeting the histidine kinase (HK) YycG. Whereas the antibacterial and anti-biofilm activity of these two thiazolidione derivatives (H2-60 and H2-81) against Enterococcus faecium remains elusive. Here, the YycG recombinant proteins containing HisKA and HATPase_c domain of E. faecium DO were in vitro expressed in E. coli competent cell BL21 (DE3) and then purified for the autophosphorylation test, indicating these two thiazolidione derivatives (H2-60 and H2-81) could directly impact the kinase phosphoration activity of YycG of E. faecium.Results: The MICs of H2-60 and H2-81 in the clinical isolates of E. faecium was in the range from 3.125mg/L to 25mg/L. Moreover, either H2-60 or H2-81showed the excellent bactericidal activity against E. faecium with the single dose or its combination with daptomycin (4 × MIC) by time-killing assay. Furthermore, over 90% of E. faecium biofilm formation could markedly be inhibited by two thiazolidione derivatives (H2-60 and H2-81) within 1/4×MIC value. In addition, the frequency of the eradicated viable cells embedded in mature biofilm were evaluated by the confocal laser microscopy, suggesting that of H2-60 combined with ampicillin or daptomycin was significantly high when compared with its monotherapy (78.17% and 74.48%vs.41.59%, respectively, P< 0.01). Conclusion: Two thiazolidione derivatives (H2-60 and H2-81) exhibit the robust antibacterial and anti-biofilm activity against E. faecium by targeting the histidine kinase (HK) YycG.

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhong Chen ◽  
Yanpeng Xiong ◽  
Yuanyuan Tang ◽  
Yuxi Zhao ◽  
Junwen Chen ◽  
...  

Abstract Background Previous reports have demonstrated two thiazolidione derivatives (H2-60 and H2-81) can robustly inhibit the planktonic growth and biofilm formation of S. epidermidis and S. aureus by targeting the histidine kinase YycG. Whereas the antibacterial and anti-biofilm activity of these two thiazolidione derivatives (H2-60 and H2-81) against Enterococcus faecium remains elusive. Here, the pET28a-YycG recombinant plasmid were in vitro expressed in E. coli competent cell BL21 (DE3) and induced to express YycG’ protein (conding HisKA and HATPase_c domain) by 0.5 mM IPTG and was purified by Ni – NTA agarose and then for the autophosphorylation test. Antimicrobial testing and time-killing assay were also be determined. Anti-biofilm activity of two derivatives with sub-MIC concentration towards positive biofilm producers of clinical E. faecium were detected using polystyrene microtiter plate and CLSM. Results The MICs of H2-60 and H2-81 in the clinical isolates of E. faecium were in the range from 3.125 mg/L to 25 mg/L. Moreover, either H2-60 or H2-81 showed the excellent bactericidal activity against E. faecium with monotherapy or its combination with daptomycin by time-killing assay. E. faecium planktonic cells can be decreased by H2-60 or H2-81 for more than 3 × log10 CFU/mL after 24 h treatment when combined with daptomycin. Furthermore, over 90% of E. faecium biofilm formation could markedly be inhibited by H2-60 and H2-81 at 1/4 × MIC value. In addition, the frequency of the eradicated viable cells embedded in mature biofilm were evaluated by the confocal laser microscopy, suggesting that of H2-60 combined with ampicillin or daptomycin was significantly high when compared with single treatment (78.17 and 74.48% vs. 41.59%, respectively, P < 0.01). Conclusion These two thiazolidione derivatives (H2-60 and H2-81) could directly impact the kinase phosphoration activity of YycG of E. faecium. H2-60 combined with daptomycin exhibit the excellent antibacterial and anti-biofilm activity against E. faecium by targeting YycG.


2009 ◽  
Vol 58 (12) ◽  
pp. 1623-1631 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
J. Y. Y. Yau ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

Demystification of microbial behaviour in mixed biofilms could have a major impact on our understanding of infectious diseases. The objectives of this study were to evaluate in vitro the interactions of six different Candida species and a Gram-negative coliform, Escherichia coli, in dual-species biofilms, and to assess the effect of E. coli LPS on Candida biofilm formation. A single isolate of E. coli ATCC 25922 and six different species of Candida, Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA-646, were studied using a standard biofilm assay. Each Candida species was co-cultured with E. coli on a polystyrene surface and biofilm formation was quantified by a c.f.u. assay. The biofilm was then analysed by Live/Dead staining and fluorescence microscopy (confocal laser-scanning microscopy, CLSM), whilst scanning electron microscopy (SEM) was employed to visualize the biofilm architecture. The effect of E. coli LPS on Candida biofilm cell activity at defined time intervals was assessed with an XTT reduction assay. A significant quantitative reduction in c.f.u. counts of C. tropicalis (after 90 min), C. parapsilosis (after 90 min and 24 h), C. krusei (after 24 h) and C. dubliniensis (after 24 and 48 h) was noted on incubation with E. coli in comparison with their monospecies biofilm counterparts (P <0.05). On the other hand, a simultaneous and significant reduction in E. coli cell numbers occurred on co-culture with C. albicans (after 90 min), and an elevation of E. coli cell numbers followed co-culture with C. tropicalis (after 24 h) and C. dubliniensis (after 24 h and 48 h) (P <0.05). All quantitative findings were confirmed by SEM and CLSM analyses. By SEM observation, dual-species biofilms demonstrated scanty architecture with reduced visible cell counts at all stages of biofilm development, despite profuse growth and dense colonization in their single-species counterparts. Significantly elevated metabolic activity, as assessed by XTT readings, was observed in E. coli LPS-treated C. tropicalis and C. parapsilosis biofilms (after 48 h), whilst this had the opposite effect for C. dubliniensis (after 24 h) (P <0.05). These data indicate that E. coli and Candida species in a mixed-species environment mutually modulate biofilm development, both quantitatively and qualitatively, and that E. coli LPS appears to be a key component in mediating these outcomes.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Liyuan Zhang ◽  
Xiaomei Lin ◽  
Ting Wang ◽  
Wei Guo ◽  
Yuan Lu

AbstractCell-free protein synthesis (CFPS) systems have become an ideal choice for pathway prototyping, protein production, and biosensing, due to their high controllability, tolerance, stability, and ability to produce proteins in a short time. At present, the widely used CFPS systems are mainly based on Escherichia coli strain. Bacillus subtilis, Corynebacterium glutamate, and Vibrio natriegens are potential chassis cells for many biotechnological applications with their respective characteristics. Therefore, to expand the platform of the CFPS systems and options for protein production, four prokaryotes, E. coli, B. subtilis, C. glutamate, and V. natriegens were selected as host organisms to construct the CFPS systems and be compared. Moreover, the process parameters of the CFPS system were optimized, including the codon usage, plasmid synthesis competent cell selection, plasmid concentration, ribosomal binding site (RBS), and CFPS system reagent components. By optimizing and comparing the main influencing factors of different CFPS systems, the systems can be optimized directly for the most influential factors to further improve the protein yield of the systems. In addition, to demonstrate the applicability of the CFPS systems, it was proved that the four CFPS systems all had the potential to produce therapeutic proteins, and they could produce the receptor-binding domain (RBD) protein of SARS-CoV-2 with functional activity. They not only could expand the potential options for in vitro protein production, but also could increase the application range of the system by expanding the cell-free protein synthesis platform.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


Author(s):  
María Consuelo Latorre ◽  
María Jesús Pérez-Granda ◽  
Paul B Savage ◽  
Beatriz Alonso ◽  
Pablo Martín-Rabadán ◽  
...  

Abstract Background Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. Objectives We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). Methods We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. Results The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0–3.3 × 102) versus 3.32 × 109 (6.6 × 108–3.8 × 109), P &lt; 0.001; 0.0 (0.0–5.4 × 103) versus 1.32 × 106 (2.3 × 103–5.0 × 107), P &lt; 0.001; and 8.1 × 105 (8.5 × 101–1.4 × 109) versus 2.7 × 108 (8.6 × 106–1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5–not applicable (NA)] versus 87.9 (60.5–NA), P = 0.05; 9.1 (6.7–NA) versus 62.6 (42.0–NA), P = 0.05; and 97.7 (94.6–NA) versus 187.3 (43.9–NA), P = 0.827. Conclusions We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


2006 ◽  
Vol 72 (4) ◽  
pp. 2864-2875 ◽  
Author(s):  
Cordula Lembke ◽  
Andreas Podbielski ◽  
Carlos Hidalgo-Grass ◽  
Ludwig Jonas ◽  
Emanuel Hanski ◽  
...  

ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]) is a frequent cause of purulent infections in humans. As potentially important aspects of its pathogenicity, GAS was recently shown to aggregate, form intratissue microcolonies, and potentially participate in multispecies biofilms. In this study, we show that GAS in fact forms monospecies biofilms in vitro, and we analyze the basic parameters of S. pyogenes in vitro biofilm formation, using Streptococcus epidermidis as a biofilm-positive control. Of nine clinically important serotype strains, M2, M6, M14, and M18 were found to significantly adhere to coated and uncoated polystyrene surfaces. Fibronectin and collagen types I and IV best supported primary adherence of serotype M2 and M18 strains, respectively, whereas serotype M6 and M14 strains strongly bound to uncoated polystyrene surfaces. Absorption measurements of safranin staining, as well as electron scanning and confocal laser scanning microscopy, documented that primary adherence led to subsequent formation of three-dimensional biofilm structures consisting of up to 46 bacterial layers. Of note, GAS isolates belonging to the same serotype were found to be very heterogeneous in their biofilm-forming behavior. Biofilm formation was equally efficient under static and continuous flow conditions and consisted of the classical three steps, including partial disintegration after long-term incubation. Activity of the SilC signaling peptide as a component of a putative quorum-sensing system was found to influence the biofilm structure and density of serotype M14 and M18 strains. Based on the presented methods and results, standardized analyses of GAS biofilms and their impact on GAS pathogenicity are now feasible.


2020 ◽  
Vol 83 (7) ◽  
pp. 1261-1267
Author(s):  
TING LIU ◽  
JINGFAN WANG ◽  
XIAOMAN GONG ◽  
XIAOXIA WU ◽  
LIU LIU ◽  
...  

ABSTRACT The purpose of the present study was to determine the bioactive compounds in rosemary essential oil (REO) and tea tree essential oil (TEO) and to investigate their antibacterial and antibiofilm activities against Staphylococcus aureus and Escherichia coli in vitro. The MIC and MBC assays were performed to assess the antibacterial activity of these two EOs against S. aureus and E. coli with the broth microdilution method. A crystal violet assay was used to ascertain the effects of EOs on the biofilm formation of the test strains, and a tetrazolium bromide (MTT) assay was used to measure the level of inactivation of mature biofilms by EOs. Gas chromatography–mass spectrometry revealed 15 compounds in REO and 27 compounds in TEO, representing 97.78 and 98.13% of the total EO, respectively. Eucalyptol and α-pinene were found in high concentrations in REO, and the two major compounds in TEO were 4-terpineol and terpinolene. The MICs of REO for the two S. aureus and E. coli test strains were both 0.5 mg/mL, and the MICs of TEO for the two strains were both 0.25 mg/mL. Therefore, these EOs can significantly inhibit the formation of biofilms and induced morphological biofilm changes, as verified by scanning electron microscopy. Both EOs had destructive effects on the mature biofilm of the two test strains. TEO was more inhibitory than REO for biofilm formation by the two test strains. HIGHLIGHTS


2001 ◽  
Vol 45 (1) ◽  
pp. 243-251 ◽  
Author(s):  
Lorna E. T. Stearne ◽  
Clarissa Kooi ◽  
Wil H. F. Goessens ◽  
Irma A. J. M. Bakker-Woudenberg ◽  
Inge C. Gyssens

ABSTRACT To determine the efficacy of trovafloxacin as a possible treatment for intra-abdominal abscesses, we have developed an anaerobic time-kill technique using different inocula to study the in vitro killing ofBacteroides fragilis in pure culture or in mixed culture with either Escherichia coli or a vancomycin-resistant strain of Enterococcus faecium (VREF). With inocula of 5 × 105 CFU/ml and trovafloxacin concentrations of ≤2 μg/ml, a maximum observed effect (E max) of ≥6.1 (log10 CFU/ml) was attained with all pure and mixed cultures within 24 h. With inocula of 108CFU/ml, a similar E max and a similar concentration to produce 50% of E max(EC50) for B. fragilis were found in both pure cultures and mixed cultures with E. coli. However, to produce a similar killing of B. fragilis in the mixed cultures with VREF, a 14-fold increase in the concentration of trovafloxacin was required. A vancomycin-susceptible strain of E. faecium and a trovafloxacin-resistant strain of E. coli were also found to confer a similar “protective” effect on B. fragilis against the activity of trovafloxacin. Using inocula of 109 CFU/ml, the activity of trovafloxacin was retained for E. coli and B. fragilis and was negligible against VREF. We conclude that this is a useful technique to study the anaerobic killing of mixed cultures in vitro and may be of value in predicting the killing of mixed infections in vivo. The importance of using mixed cultures and not pure cultures is clearly shown by the difference in the killing of B. fragilis in the mixed cultures tested. Trovafloxacin will probably be ineffective in the treatment of infections involving large numbers of enterococci. However, due to its ability to retain activity against large cultures of B. fragilis and E. coli, trovafloxacin could be beneficial in the treatment of intra-abdominal abscesses.


2008 ◽  
Vol 57 (12) ◽  
pp. 1466-1472 ◽  
Author(s):  
Helena Bujdáková ◽  
Ema Paulovičová ◽  
Silvia Borecká-Melkusová ◽  
Juraj Gašperík ◽  
Soňa Kucharíková ◽  
...  

The Candida antigen CR3-RP (complement receptor 3-related protein) is supposed to be a ‘mimicry’ protein because of its ability to bind antibody directed against the α subunit of the mammalian CR3 (CD11b/CD18). This study aimed to (i) investigate the specific humoral isotypic response to immunization with CR3-RP in vivo in a rabbit animal model, and (ii) determine the role of CR3-RP in the adherence of Candida albicans in vitro using the model systems of buccal epithelial cells (BECs) and biofilm formation. The synthetic C. albicans peptide DINGGGATLPQ corresponding to 11 amino-acids of the CR3-RP sequence DINGGGATLPQALXQITGVIT, determined by N-terminal sequencing, was used for immunization of rabbits to obtain polyclonal anti-CR3-PR serum and for subsequent characterization of the humoral isotypic response of rabbits. A significant increase of IgG, IgA and IgM anti-CR3-RP specific antibodies was observed after the third (P<0.01) and the fourth (P<0.001) immunization doses. The elevation of IgA levels suggested peptide immunomodulation of the IgA1 subclass, presumably in coincidence with Candida epithelial adherence. Blocking CR3-RP with polyclonal anti-CR3-RP serum reduced the ability of Candida to adhere to BECs, in comparison with the control, by up to 35 % (P<0.001), and reduced biofilm formation by 28 % (P<0.001), including changes in biofilm thickness and integrity detected by confocal laser scanning microscopy. These properties of CR3-RP suggest that it has potential for future vaccine development.


Sign in / Sign up

Export Citation Format

Share Document