scholarly journals Multi Potent Aromatic Nano Colloid: Synthesis, Characterization and Applications

2020 ◽  
Author(s):  
Ranjani S ◽  
Salman Al Farzi M ◽  
Shruthy Priya p ◽  
Mohammad Waseem ◽  
Ruckmani K ◽  
...  

Abstract In this study the aromatic nanocolloids (CANCs) are synthesized using the noble metal silver by using Citronella extract and confirmed through physio chemical analysis. The synthesised CANCs were evaluated for its antimicrobial activity and antibiofilm activity against pathogenic biofilm forming E. coli. In addition, synthesized CANCs were evaluated for the expression of virulent genes encoding AmpC and CTX-M-15. The results confirmed that CANCs showed effective antimicrobial activity through its bacteriostatic, bactericidal and quorum quencher activity and downregulated CTX-M-15 gene. CANCs were validated as alternate to the commercial fungicides to control plant pathogenic fungi such as A. niger MTCC (281), Fusarium graminearum MTCC (2089) and F. udum MTCC (2204). Furthermore, analysis of CANCs on breast cancer (MCF-7) cells under in vitro condition showed that the cytotoxicity of CANCs is dose dependent. Thus, the multifunctional CANCs can be utilized as potential antimicrobial, antifungal and anticancer agent.

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ranjani Soundhararajan ◽  
Salman Al Farzi Mohamed Sheik Meeran ◽  
Shruthy Priya Prakash ◽  
Waseem Mohammad ◽  
Ruckmani Kandasamy ◽  
...  

Abstract In this study the aromatic nanocolloids (CANCs) are synthesized using the noble metal silver by using Citronella extract and confirmed through physio chemical analysis. The synthesised CANCs were evaluated for its antimicrobial activity and antibiofilm activity against pathogenic biofilm forming E. coli. In addition, synthesized CANCs were evaluated for the expression of virulent genes encoding AmpC and CTX-M-15. The results confirmed that CANCs showed effective antimicrobial activity through its bacteriostatic, bactericidal and quorum quencher activity and downregulated CTX-M-15 gene. CANCs were validated as alternate to the commercial fungicides to control plant pathogenic fungi such as A. niger MTCC (281), Fusarium graminearum MTCC (2089) and F. udum MTCC (2204). Furthermore, analysis of CANCs on breast cancer (MCF-7) cells under in vitro condition showed that the cytotoxicity of CANCs is dose dependent. Thus, the multifunctional CANCs can be utilized as potential antimicrobial, antifungal and anticancer agent.


2000 ◽  
Vol 182 (21) ◽  
pp. 6154-6160 ◽  
Author(s):  
Kenji Atarashi ◽  
Akira Kaji

ABSTRACT Ribosome recycling factor (RRF) of Thermotoga maritimawas expressed in Escherichia coli from the cloned T. maritima RRF gene and purified. Expression of T. maritima RRF inhibited growth of the E. coli host in a dose-dependent manner, an effect counteracted by the overexpression of E. coli RRF. T. maritima RRF also inhibited the E. coli RRF reaction in vitro. Genes encoding RRFs fromStreptococcus pneumoniae and Helicobacter pylori have been cloned, and they also impair growth of E. coli, although the inhibitory effect of these RRFs was less pronounced than that of T. maritima RRF. The amino acid sequence at positions 57 to 62, 74 to 78, 118 to 122, 154 to 160, and 172 to 176 in T. maritima RRF differed totally from that ofE. coli RRF. This suggests that these regions are important for the inhibitory effect of heterologous RRF. We further suggest that bending and stretching of the RRF molecule at the hinge between two domains may be critical for RRF activity and therefore responsible forT. maritima RRF inhibition of the E. coli RRF reaction.


2014 ◽  
Vol 40 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Sinar David Granada García ◽  
Antoni Rueda Lorza ◽  
Carlos Alberto Peláez

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.


2018 ◽  
Vol 19 (10) ◽  
pp. 3179 ◽  
Author(s):  
Hongling Gu ◽  
Na Li ◽  
Jiangkun Dai ◽  
Yaxi Xi ◽  
Shijun Wang ◽  
...  

A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.


2020 ◽  
Vol 151 ◽  
pp. 15550-15558
Author(s):  
Amégninou Agban ◽  
Yao Hoekou ◽  
Passimna Pissang ◽  
Tchadjobo Tchacondo ◽  
Komlan Batawila

Objectif : L’objectif de ce travail était d’évaluer in vitro l’activité antimicrobienne des extraits de feuilles et tige de Jatropha multifida sur la croissance de Candida albicans, Escherichia coli et Staphylococcus aureus, puis d’évaluer in vivo la toxicité de cette plante. Méthodologie et résultats : Les méthodes de diffusion en milieu gélosé et de microdilution en milieu liquide ont été utilisées pour évaluer l’effet antimicrobien. Une étude en subaigüe était réalisée afin d’explorer les effets toxiques de l’extrait aqueux des feuilles. Les résultats des tests antimicrobiens montrent une activité des extraits de feuilles et tige de J. multifida sur la croissance des souches utilisées avec des diamètres de zones d’inhibition allant de 8 à 25 mm et des concentrations minimales inhibitrices (CMI) variant de 0,039 mg/mL à 1,25 mg/mL à l’exception des souches de E. coli qui sont résistantes aux extraits de la tige. L’administration en subaigüe de l’extrait aqueux des feuilles de J. multifida à la dose de 600 mg/kg entraîne une perte significative de poids chez les souris. Conclusion et applications des résultats : Les extraits aqueux, éthanolique et hydroéthanolique des feuilles et tige de J. multifida possèdent d’activité antimicrobienne et pourraient être utilisés dans le traitement des Candidoses à C. albicans et des infections à S. aureus. Mais l’essai de toxicité subaigüe montre que l’extrait aqueux de la plante serait toxique. Des études toxicologiques approfondies restent donc nécessaires sur ces extraits afin de mieux élucider leur inocuité. Mots-clés : Jatropha multifida, extraits de feuilles et de tige, activités antifongique et antibactérienne, toxicité. Agban et al., J. Appl. Biosci. 2020 Evaluation du potentiel antimicrobien et de la toxicité des extraits de Jatropha multifida Linn, (Euphorbiaceae) 15551 Evaluation of antimicrobial potential and toxicity of Jatropha multifida Linn, (Euphorbiaceae) extracts ABSTRACT Objective: The objective of this study was to evaluate in vitro the antimicrobial activity of leaves and stem of Jatropha multifida extracts against Candida albicans, Escherichia coli and Staphylococcus aureus, and then to evaluate in vivo the toxicity of this plant. Methodology and Results: The agar well-diffusion and the NCCLS broth microdilution methods were used to assess the antimicrobial effect. A subacute study was carried out to explore the toxic effects of the aqueous extract of the leaves. The results of the antimicrobial tests show an activity of the extracts of leaves and stems of J. multifida on the growth of the strains used with diameters of inhibitory zones ranging from 8 to 25 mm and minimum inhibitory concentrations (MIC) varying from 0.039 mg/mL to 1.25 mg/mL exception E. coli strains which are resistant to extracts from the stem. Subacute administration of the aqueous extract of the leaves of J. multifida at a dose of 600 mg/kg leads to a significant loss of weight in the mice. Conclusion and application of findings : The aqueous, ethanolic and hydroethanolic extracts of the leaves and stem of J. multifida have antimicrobial activity and could be used in the treatment of Candidiasis and bacterial infections due respectively to C. albicans and S. aureus. But the subacute toxicity test shows that the aqueous extract of the plant would be toxic. Extensive toxicological studies therefore remain necessary on these extracts in order to better elucidate their safety. Keywords: Jatropha multifida extracts of leaves and stem, antifungal and antibacterial activities, toxicity


2021 ◽  
Vol 6 (1) ◽  
pp. 7-12
Author(s):  
Pankaj Gour ◽  
Lata Deshmukh ◽  
Tulshiram Dadmal ◽  
Archana Ramteke

A new series of 1,2,3-triazole linked mercaptobenzoxazole/oxazolo- [4,5-b] pyridine-2-thiol derivatives (6a-j) were synthesized starting from 2-aminophenol/2-aminopyridin-3-ol in three steps via cyclization, alkylation followed by reaction with various aromatic azides using click chemistry approach. All the synthesized compounds were evaluated for their antimicrobial activity viz. E. coli, P. aeruginosa, S. aureus and S. pyogenus and three pathogenic fungi viz. C. albicans, A. niger and A. clavatus and promising compounds were identified.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1505 ◽  
Author(s):  
Shuyang Li ◽  
Xingtao Chen ◽  
Xiaomei Wang ◽  
Yi Xiong ◽  
Yonggang Yan ◽  
...  

Zinc can enhance osteoblastic bone formation and stimulate osteogenic differentiation, suppress the differentiation of osteoclast precursor cells into osteoclasts, and inhibit pathogenic bacterial growth in a dose-dependent manner. In this study, simonkolleite, as a novel zinc resource, was coated on poly (amino acids) (PAA) via suspending PAA powder in different concentrations of zinc chloride (ZnCl2) solution, and the simonkolleite-coated PAA (Zn–PAA) was characterized by SEM, XRD, FT-IR and XPS. Zinc ions were continuously released from the coating, and the release behavior was dependent on both the concentration of the ZnCl2 immersing solution and the type of soak solutions (SBF, PBS and DMEM). The Zn–PAA was cultured with mouse bone marrow stem cells (BMSCs) through TranswellTM plates, and the results indicated that the relative cell viability, alkaline phosphatase (ALP) activity and mineralization of BMSCs were significantly higher with Zn–PAA as compared to PAA. Moreover, the Zn–PAA was cultured with RAW264.7 cells, and the results suggested an inhibiting effect of Zn–PAA on the cell differentiation into osteoclasts. In addition, Zn–PAA exhibited an antibacterial activity against both S. aureus and E. coli. These findings suggest that simonkolleite coating with certain contents could promote osteogenesis, suppress osteoclast formation and inhibit bacteria, indicating a novel way of enhancing the functionality of synthetic bone graft material and identifying the underline principles for designing zinc-containing bone grafts.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2766 ◽  
Author(s):  
Heba E. Hashem ◽  
Abd El-Galil E. Amr ◽  
Eman S. Nossier ◽  
Elsayed A. Elsayed ◽  
Eman M. Azmy

To develop new antimicrobial agents, a series of novel thiourea derivatives incorporated with different moieties 2–13 was designed and synthesized and their biological activities were evaluated. Compounds 7a, 7b and 8 exhibited excellent antimicrobial activity against all Gram-positive and Gram-negative bacteria, and the fungal Aspergillus flavus with minimum inhibitory concentration (MIC) values ranged from 0.95 ± 0.22 to 3.25 ± 1.00 μg/mL. Furthermore, cytotoxicity studies against MCF-7 cells revealed that compounds 7a and 7b were the most potent with IC50 values of 10.17 ± 0.65 and 11.59 ± 0.59 μM, respectively. On the other hand, the tested compounds were less toxic against normal kidney epithelial cell lines (Vero cells). The in vitro enzyme inhibition assay of 8 displayed excellent inhibitory activity against Escherichia coli DNA B gyrase and moderate one against E. coli Topoisomerase IV (IC50 = 0.33 ± 1.25 and 19.72 ± 1.00 µM, respectively) in comparison with novobiocin (IC50 values 0.28 ± 1.45 and 10.65 ± 1.02 µM, respectively). Finally, the molecular docking was done to position compound 8 into the E. coli DNA B and Topoisomerase IV active pockets to explore the probable binding conformation. In summary, compound 8 may serve as a potential dual E. coli DNA B and Topoisomerase IV inhibitor.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Birkan Açıkgöz ◽  
İskender Karaltı ◽  
Melike Ersöz ◽  
Zeynep M. Coşkun ◽  
Gülşah Çobanoğlu ◽  
...  

The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more signifi cant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 μg/ml for the extracts from C. rangiformis and C. convoluta, respectively.


Sign in / Sign up

Export Citation Format

Share Document