scholarly journals Macrophages-Derived, LRG1-Enriched Extracellular Vesicles Exacerbate Aristolochic Acid Nephropathy Via A TGFβR1-Dependent Manner

Author(s):  
Wenjuan Jiang ◽  
Jiahui Dong ◽  
Changlin Du ◽  
Chuanting Xu ◽  
Songbing Xu ◽  
...  

Abstract Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some herbal medicines, but treatment remains ineffective. We previously found NADPH oxidases 4 (NOX4), which regulates oxidative stress, play an important role in kidney injury model. However, its regulatory mechanism of action in AAN is still obscure. In this study, we established AAN model in vivo, a co-culture system of macrophage and TEC, and macrophage/TEC conditioned media culture model in vitro respectively. We found macrophages infiltration promoted injury,oxidative stress and apoptosis of TEC. Furthermore, the role of macrophage in AAN was dependent on macrophages-derived EV. Importantly, we found that macrophages-derived, Leucine-rich α-2-glycoprotein 1(LRG1)-enriched EV induced TEC injury and apoptosis of via a TGFβR1-dependent process. Mechanistically, macrophages-derived, LRG1-enriched EV mediating TECs injury by upregulating NOX4 in AAN model. This study may help design a better therapeutic strategy to treat AAN patients.

2018 ◽  
Vol 50 (3) ◽  
pp. 841-850 ◽  
Author(s):  
Hang Sun ◽  
Huihai Yang ◽  
Haonan Ruan ◽  
Wei Li ◽  
Xinhong He ◽  
...  

Background/Aims: Sika deer (Cervus nippon Temminck) antler is traditional animal medicine of renal protection in East Asia. This study measured the effect of sika deer antler protein (SDAPR) on gentamicin (GM)-induced cytotoxicity in HEK293 cells, and investigated the effect of SDAPR against GM-induced nephrotoxicity in mice. Methods: HEK293 cells viability and oxidative stress were measured in HEK293 cells while flow cytometry was used for apoptosis analysis. The acute kidney injury biomarkers, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and cystatin c (Cys-C), were repeatedly measured by ELISA assay. ICR male mice were randomly assigned six groups: Control, GM with vehicle, single SDAPR, GM with SDAPR at three concentrations 50, 100, 200 mg/kg/d, p.o., 10 d. GM was injected for 8 consecutive days (100 mg/kg/d, i.p.). Renal function, oxidative stress and levels of inflammatory factors were measured in vivo. Renal tissues were stained with H&E to observe pathological changes. Results: Pretreatment with SDAPR (0.5-4.0 mg/mL) significantly improved cell viability. Treatment with SDAPR could reduce KIM-1, NGAL and Cys-C activity. SDAPR could improve antioxidant defense and attenuated apoptosis on HEK293 cells. SDAPR also ameliorated GM-induced histopathologic changes, and decreased blood urea nitrogen (BUN) and serum creatinine (Cr). Additionally, SDAPR significantly regulated oxidative stress marker and interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) inflammatory cytokines. Conclusion: These results show that SDAPR could be an effective dietary supplement to relieve GM-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vitro and vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2020 ◽  
Vol 9 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Xuan Qiu ◽  
Yufa Miao ◽  
Xingchao Geng ◽  
Xiaobing Zhou ◽  
Bo Li

Abstract There have been intensive efforts to identify in vivo biomarkers that can be used to monitor drug-induced kidney damage before significant impairment occurs. Kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, clusterin, β2-microglobulin and cystatin C (CysC) have been validated as clinical or preclinical biomarkers in urinary and plasma predictive of acute and chronic kidney injuries and diseases. A high-throughput in vitro assay predictive of nephrotoxicity could potentially be implemented in early drug discovery stage to reduce attrition at later stages of drug development. To assess the potential of these known in vivo biomarkers for in vitro evaluation of drug-induced nephrotoxicity, we selected four nephrotoxic agents (cisplatin, cyclosporin, aristolochic acid I and gentamicin) and detected their effects on the protein levels of nephrotoxic biomarkers in RPTEC/TERT1 cells. The protein levels of clusterin, CysC, GSTπ and TIMP-1 significantly increased in the conditioned media of RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin. The messenger RNA levels of clusterin, CysC, GSTπ and TIMP-1 also increased in RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin, indicating that drug-induced upregulation involves transcriptional activation. Taken together, the results clearly demonstrate that among the known in vivo nephrotoxic biomarkers, clusterin, CysC, GSTπ and TIMP-1 can be effectively used as in vitro biomarkers for drug-induced nephrotoxicity in RPTEC/TERT1 cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Hong-feng Zhang ◽  
Jia-hong Wang ◽  
Yan-li Wang ◽  
Cheng Gao ◽  
Yan-ting Gu ◽  
...  

Salvianolic acid A (SAA) is a bioactive polyphenol extracted from Salviae miltiorrhizae Bunge, which possesses a variety of pharmacological activities. In our previous study, we have demonstrated that SAA effectively attenuates kidney injury and inflammation in an established animal model of 5/6 nephrectomized (5/6Nx) rats. However, there has been limited research regarding the antioxidative effects of SAA on chronic kidney disease (CKD). Here, we examined the antioxidative effects and underlying mechanisms of SAA in 5/6Nx rats. The rats were injected with SAA (2.5, 5, and 10 mg·kg-1·d-1, ip) for 28 days. Biochemical, flow cytometry, and Western blot analyses showed that SAA significantly increased the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GPx), and catalase (CAT) and lowered the levels of malondialdehyde (MDA), reactive oxygen species (ROS), and NADPH oxidase 4 (NOX-4) in a dose-dependent manner in 5/6Nx rats and in H2O2-induced HK-2 cells in vitro. Moreover, SAA enhanced the activation of the protein kinase B/glycogen synthase kinase-3β/nuclear factor-erythroid-2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathway in a dose-dependent manner and subsequently increased the expression of heme oxygenase-1 (HO-1) in the kidney of 5/6Nx rats, which were consistent with those obtained in H2O2-induced HK-2 cells in vitro shown by Western blot analysis. Furthermore, SAA significantly increased the expression of intranuclear Nrf2 and HO-1 proteins compared to HK-2 cells stimulated by LPS on the one hand, which can be enhanced by QNZ to some extent; on the other hand, SAA significantly lowered the expression of p-NF-κB p65 and ICAM-1 proteins compared to HK-2 cells stimulated by H2O2, which can be abrogated by ML385 to some extent. In conclusion, our results demonstrated that SAA effectively protects the kidney against oxidative stress in 5/6Nx rats. One of the pivotal mechanisms for the protective effects of SAA on kidney injury was mainly related with its antioxidative roles by activating the Akt/GSK-3β/Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhihong Lin ◽  
Danni Zhu ◽  
Yongqing Yan ◽  
Boyang Yu ◽  
Qiujuan Wang ◽  
...  

Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed ofPoria cocos(Chinese name:Fu Ling),Atractylodes macrocephala(Chinese name:Bai Zhu) andAngelica sinensis(Chinese names:Danggui, Dong quai, Donggui; Korean name:Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stressin vivoandin vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC5010.6%, ET501.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC502.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC503.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals.


2019 ◽  
Vol 317 (4) ◽  
pp. F881-F889 ◽  
Author(s):  
Hyung Jung Oh ◽  
Hyewon Oh ◽  
Bo Young Nam ◽  
Je Sung You ◽  
Dong-Ryeol Ryu ◽  
...  

As oxidative stress is one major factor behind contrast-associated acute kidney injury (CA-AKI), we investigated the protective effect of klotho against CA-AKI via the antioxidative effect. In in vitro experiments, cells (NRK-52E) were divided into the following three groups: control, iopamidol, or iopamidol + recombinant klotho (rKL) groups. Moreover, cell viability was measured with the Cell Counting Kit-8 assay, and oxidative stress was examined with 2',7'-dichlorodihydrofluorescein diacetate fluorescence intensity. RT-PCR and Western blot analysis were performed to assess propidium iodide klotho expression, and Bax-to-Bcl-2 and apoptosis ratios were evaluated with annexin V/Hoechst 33342 staining. Furthermore, we knocked down the klotho gene using siRNA to verify the endogenous effect of klotho. In our in vivo experiments, oxidative stress was evaluated with the thiobarbituric acid-reactive substance assay, and apoptosis was evaluated with the Bax-to-Bcl-2 ratio and cleaved caspase-3 immunohistochemistry. Additionally, cell and tissue morphology were investigated with transmission electron microscopy. In both in vitro and in vivo experiments, mRNA and protein expression of klotho significantly decreased in CA-AKI mice compared with control mice, whereas oxidative stress and apoptosis markers were significantly increased in CA-AKI mice. However, rKL supplementation mitigated the elevated apoptotic markers and oxidative stress in the CA-AKI mouse model and improved cell viability. In contrast, oxidative stress and apoptotic markers were more aggravated when the klotho gene was knocked down. Moreover, we found more cytoplasmic vacuoles in the CA-AKI mouse model using transmission electron microscopy but fewer cytoplasmic vacuoles in rKL-supplemented cells. The present study shows that klotho in proximal tubular cells can protect against CA-AKI via an antioxidative effect.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Anongporn Kobroob ◽  
Wachirasek Peerapanyasut ◽  
Nipon Chattipakorn ◽  
Orawan Wongmekiat

This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria.


2016 ◽  
Vol 113 (47) ◽  
pp. E7564-E7571 ◽  
Author(s):  
Carmen R. Sunico ◽  
Abdullah Sultan ◽  
Tomohiro Nakamura ◽  
Nima Dolatabadi ◽  
James Parker ◽  
...  

Recent studies have pointed to protein S-nitrosylation as a critical regulator of cellular redox homeostasis. For example, S-nitrosylation of peroxiredoxin-2 (Prx2), a peroxidase widely expressed in mammalian neurons, inhibits both enzymatic activity and protective function against oxidative stress. Here, using in vitro and in vivo approaches, we identify a role and reaction mechanism of the reductase sulfiredoxin (Srxn1) as an enzyme that denitrosylates (thus removing -SNO) from Prx2 in an ATP-dependent manner. Accordingly, by decreasing S-nitrosylated Prx2 (SNO-Prx2), overexpression of Srxn1 protects dopaminergic neural cells and human-induced pluripotent stem cell (hiPSC)-derived neurons from NO-induced hypersensitivity to oxidative stress. The pathophysiological relevance of this observation is suggested by our finding that SNO-Prx2 is dramatically increased in murine and human Parkinson’s disease (PD) brains. Our findings therefore suggest that Srxn1 may represent a therapeutic target for neurodegenerative disorders such as PD that involve nitrosative/oxidative stress.


Open Biology ◽  
2013 ◽  
Vol 3 (10) ◽  
pp. 120173 ◽  
Author(s):  
Ingrid Kassner ◽  
Anneli Andersson ◽  
Monika Fey ◽  
Martin Tomas ◽  
Elisa Ferrando-May ◽  
...  

ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein–protein interactions and is implicated in many biological processes and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that catalyses lysine monomethylation of histones, but also methylates many non-histone target proteins such as p53 or DNMT1. Here, we identify ARTD1 as a new SET7/9 target protein that is methylated at K508 in vitro and in vivo . ARTD1 auto-modification inhibits its methylation by SET7/9, while auto-poly-ADP-ribosylation is not impaired by prior methylation of ARTD1. Moreover, ARTD1 methylation by SET7/9 enhances the synthesis of PAR upon oxidative stress in vivo . Furthermore, laser irradiation-induced PAR formation and ARTD1 recruitment to sites of DNA damage in a SET7/9-dependent manner. Together, these results reveal a novel mechanism for the regulation of cellular ARTD1 activity by SET7/9 to assure efficient PAR formation upon cellular stress.


Sign in / Sign up

Export Citation Format

Share Document