scholarly journals Forecasting Factor of Safety of Slopes Stability Using Several Machine Learning Techniques

Author(s):  
Arsalan Mahmoodzadeh ◽  
Mokhtar Mohammadi

Abstract Because of the disasters associated with slope failure, the analysis and forecasting of slope stability for geotechnical engineers are crucial. In this work, in order to forecast the factor of safety (FOS) of the slopes, six machine learning (ML) techniques of Gaussian process regression (GPR), support vector regression (SVR), decision trees (DT), long-short term memory (LSTM), deep neural networks (DNN), and K-nearest neighbors (KNN) were performed. A total of 327 slope cases in Iran with various geometric and shear strength parameters analyzed by PLAXIS software to evaluate their FOS, were employed in the models. The K-fold (K=5) cross-validation (CV) method was applied to evaluate the performance of models’ prediction. Finally, all the models produced acceptable results and almost close to each other. However, the GPR model with R2 = 0.8139, RMSE = 0.160893, and MAPE = 7.209772%, was the most accurate model to predict slope stability. Also, the backward selection method was applied to evaluate the contribution of each parameter in the prediction problem. The results showed that all the features considered in this study have significant contributions to slope stability. However, features φ (friction angle) and γ (unit weight) were the most effective and least effective parameters on slope stability, respectively.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1734 ◽  
Author(s):  
Samit Thapa ◽  
Zebin Zhao ◽  
Bo Li ◽  
Lu Lu ◽  
Donglei Fu ◽  
...  

Although machine learning (ML) techniques are increasingly popular in water resource studies, they are not extensively utilized in modeling snowmelt. In this study, we developed a model based on a deep learning long short-term memory (LSTM) for snowmelt-driven discharge modeling in a Himalayan basin. For comparison, we developed the nonlinear autoregressive exogenous model (NARX), Gaussian process regression (GPR), and support vector regression (SVR) models. The snow area derived from moderate resolution imaging spectroradiometer (MODIS) snow images along with remotely sensed meteorological products were utilized as inputs to the models. The Gamma test was conducted to determine the appropriate input combination for the models. The shallow LSTM model with a hidden layer achieved superior results than the deeper LSTM models with multiple hidden layers. Out of seven optimizers tested, Adamax proved to be the aptest optimizer for this study. The evaluation of the ML models was done by the coefficient of determination (R2), mean absolute error (MAE), modified Kling–Gupta efficiency (KGE’), Nash–Sutcliffe efficiency (NSE), and root-mean-squared error (RMSE). The LSTM model (KGE’ = 0.99) enriched with snow cover input achieved the best results followed by NARX (KGE’ = 0.974), GPR (KGE’ = 0.95), and SVR (KGE’ = 0.949), respectively. The outcome of this study proves the applicability of the ML models, especially the LSTM model, in predicting snowmelt driven discharge in the data-scant mountainous watersheds.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


Computers ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Robertas Damaševičius ◽  
Marcin Woźniak

We describe the sentiment analysis experiments that were performed on the Lithuanian Internet comment dataset using traditional machine learning (Naïve Bayes Multinomial—NBM and Support Vector Machine—SVM) and deep learning (Long Short-Term Memory—LSTM and Convolutional Neural Network—CNN) approaches. The traditional machine learning techniques were used with the features based on the lexical, morphological, and character information. The deep learning approaches were applied on the top of two types of word embeddings (Vord2Vec continuous bag-of-words with negative sampling and FastText). Both traditional and deep learning approaches had to solve the positive/negative/neutral sentiment classification task on the balanced and full dataset versions. The best deep learning results (reaching 0.706 of accuracy) were achieved on the full dataset with CNN applied on top of the FastText embeddings, replaced emoticons, and eliminated diacritics. The traditional machine learning approaches demonstrated the best performance (0.735 of accuracy) on the full dataset with the NBM method, replaced emoticons, restored diacritics, and lemma unigrams as features. Although traditional machine learning approaches were superior when compared to the deep learning methods; deep learning demonstrated good results when applied on the small datasets.


2020 ◽  
Author(s):  
Akshay Kumar ◽  
Farhan Mohammad Khan ◽  
Rajiv Gupta ◽  
Harish Puppala

AbstractThe outbreak of COVID-19 is first identified in China, which later spread to various parts of the globe and was pronounced pandemic by the World Health Organization (WHO). The disease of transmissible person-to-person pneumonia caused by the extreme acute respiratory coronavirus 2 syndrome (SARS-COV-2, also known as COVID-19), has sparked a global warning. Thermal screening, quarantining, and later lockdown were methods employed by various nations to contain the spread of the virus. Though exercising various possible plans to contain the spread help in mitigating the effect of COVID-19, projecting the rise and preparing to face the crisis would help in minimizing the effect. In the scenario, this study attempts to use Machine Learning tools to forecast the possible rise in the number of cases by considering the data of daily new cases. To capture the uncertainty, three different techniques: (i) Decision Tree algorithm, (ii) Support Vector Machine algorithm, and (iii) Gaussian process regression are used to project the data and capture the possible deviation. Based on the projection of new cases, recovered cases, deceased cases, medical facilities, population density, number of tests conducted, and facilities of services, are considered to define the criticality index (CI). CI is used to classify all the districts of the country in the regions of high risk, low risk, and moderate risk. An online dashpot is created, which updates the data on daily bases for the next four weeks. The prospective suggestions of this study would aid in planning the strategies to apply the lockdown/ any other plan for any country, which can take other parameters to define the CI.


2021 ◽  
Vol 73 (01) ◽  
pp. 1-13

Seven state-of-the-art machine learning techniques for estimation of construction costs of reinforced-concrete and prestressed concrete bridges are investigated in this paper, including artificial neural networks (ANN) and ensembles of ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) method, and Gaussian process regression (GPR). A database of construction costs and design characteristics for 181 reinforced-concrete and prestressed-concrete bridges is created for model training and evaluation.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Panagiotis Spyridis ◽  
Oladimeji B. Olalusi

Anchorage to concrete plays a significant role in various aspects of modern construction. The structural performance of anchors under direct tensile load can lead to failure by concrete cone breakout. Concrete related failure modes are quasi-brittle, and as such, they may develop without prior warning indications of damage, while it also exposes the bearing component to damage propagation. As such, an adequate reliability assessment of anchors against concrete cone failure is of high importance, and improved precision and minimisation of uncertainty in the predictive model are critical. This contribution develops predictive models for the tensile breakout capacity of fastening systems in concrete using the Gaussian Process Regression (GPR) and the Support Vector Regression (SVR) machine learning (ML) algorithms. The models were developed utilising a set of 864 experimental anchor tests. The efficiency of the developed models is assessed by statistical comparison to the state-of-practice semi-empirical predictive model, which is embedded in international design standards. Furthermore, the algorithms were evaluated based on a newly introduced Model Explainability concept based on Analogous Rational and Mechanical phenomena (MEARM). Finally, a discussion is provided regarding the developed ML models’ suitability for use as General Probabilistic Models in a reliability framework.


Author(s):  
Sangeetha Rajesh ◽  
N. J. Nalini

Singer identification is a challenging task in music information retrieval because of the combined instrumental music with the singing voice. The previous approaches focus on identification of singers based on individual features extracted from the music clips. The objective of this work is to combine Mel Frequency Cepstral Coefficients (MFCC) and Chroma DCT-reduced Pitch (CRP) features for singer identification system (SID) using machine learning techniques. The proposed system has mainly two phases. In the feature extraction phase, MFCC, [Formula: see text]MFCC, [Formula: see text]MFCC and CRP features are extracted from the music clips. In the identification phase, extracted features are trained with Bidirectional Long Short-Term Memory (BLSTM)-based Recurrent Neural Networks (RNN) and Convolution Neural Networks (CNN) and tested to identify different singer classes. The identification accuracy and Equal Error Rate (EER) are used as performance measures. Further, the experiments also demonstrate the effectiveness of score level fusion of MFCC and CRP feature in the singer identification system. Also, the experimental results are compared with the baseline system using support vector machines (SVM).


Webology ◽  
2021 ◽  
Vol 18 (04) ◽  
pp. 1512-1526
Author(s):  
Cynthia J ◽  
G. Sakthi Priya ◽  
C. Kevin Samuel ◽  
Suguna M ◽  
Senthil J ◽  
...  

Congestion due to traffic, results in wasted fuel, increase in pollution level, increase in travel time and vehicular queuing. Smart city initiatives are aimed to improve the quality of urban life. Intelligent Transportation System (ITS) provides solution for many smart city projects, as they capture real time data without any fixed infrastructure. The real-time prediction of traffic flow aids in alleviating congestion. Accurate and timely prediction on the future traffic flow helps individual travellers, public transport, and transport planning. Existing systems are designed to predict specific traffic parameters like weekday, weekend, and holidays. This research presents a machine learning based traffic flow forecasting for the city of Bloomington, US not with any precise parameter. The day-wise dataset for the 5 areas is taken from Jan 1, 2017 to Dec 31, 2019. The algorithm used for implementation is Support Vector Regression (SVR) and Long Short-Term Memory (LSTM). LSTM algorithm provides better traffic prediction with least root means square error value.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 528
Author(s):  
David Opeoluwa Oyewola ◽  
Emmanuel Gbenga Dada ◽  
Sanjay Misra ◽  
Robertas Damaševičius

The application of machine learning techniques to the epidemiology of COVID-19 is a necessary measure that can be exploited to curtail the further spread of this endemic. Conventional techniques used to determine the epidemiology of COVID-19 are slow and costly, and data are scarce. We investigate the effects of noise filters on the performance of machine learning algorithms on the COVID-19 epidemiology dataset. Noise filter algorithms are used to remove noise from the datasets utilized in this study. We applied nine machine learning techniques to classify the epidemiology of COVID-19, which are bagging, boosting, support vector machine, bidirectional long short-term memory, decision tree, naïve Bayes, k-nearest neighbor, random forest, and multinomial logistic regression. Data from patients who contracted coronavirus disease were collected from the Kaggle database between 23 January 2020 and 24 June 2020. Noisy and filtered data were used in our experiments. As a result of denoising, machine learning models have produced high results for the prediction of COVID-19 cases in South Korea. For isolated cases after performing noise filtering operations, machine learning techniques achieved an accuracy between 98–100%. The results indicate that filtering noise from the dataset can improve the accuracy of COVID-19 case prediction algorithms.


Sign in / Sign up

Export Citation Format

Share Document