scholarly journals Predictive Modelling for Concrete Failure at Anchorages Using Machine Learning Techniques

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Panagiotis Spyridis ◽  
Oladimeji B. Olalusi

Anchorage to concrete plays a significant role in various aspects of modern construction. The structural performance of anchors under direct tensile load can lead to failure by concrete cone breakout. Concrete related failure modes are quasi-brittle, and as such, they may develop without prior warning indications of damage, while it also exposes the bearing component to damage propagation. As such, an adequate reliability assessment of anchors against concrete cone failure is of high importance, and improved precision and minimisation of uncertainty in the predictive model are critical. This contribution develops predictive models for the tensile breakout capacity of fastening systems in concrete using the Gaussian Process Regression (GPR) and the Support Vector Regression (SVR) machine learning (ML) algorithms. The models were developed utilising a set of 864 experimental anchor tests. The efficiency of the developed models is assessed by statistical comparison to the state-of-practice semi-empirical predictive model, which is embedded in international design standards. Furthermore, the algorithms were evaluated based on a newly introduced Model Explainability concept based on Analogous Rational and Mechanical phenomena (MEARM). Finally, a discussion is provided regarding the developed ML models’ suitability for use as General Probabilistic Models in a reliability framework.

2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2020 ◽  
Author(s):  
Akshay Kumar ◽  
Farhan Mohammad Khan ◽  
Rajiv Gupta ◽  
Harish Puppala

AbstractThe outbreak of COVID-19 is first identified in China, which later spread to various parts of the globe and was pronounced pandemic by the World Health Organization (WHO). The disease of transmissible person-to-person pneumonia caused by the extreme acute respiratory coronavirus 2 syndrome (SARS-COV-2, also known as COVID-19), has sparked a global warning. Thermal screening, quarantining, and later lockdown were methods employed by various nations to contain the spread of the virus. Though exercising various possible plans to contain the spread help in mitigating the effect of COVID-19, projecting the rise and preparing to face the crisis would help in minimizing the effect. In the scenario, this study attempts to use Machine Learning tools to forecast the possible rise in the number of cases by considering the data of daily new cases. To capture the uncertainty, three different techniques: (i) Decision Tree algorithm, (ii) Support Vector Machine algorithm, and (iii) Gaussian process regression are used to project the data and capture the possible deviation. Based on the projection of new cases, recovered cases, deceased cases, medical facilities, population density, number of tests conducted, and facilities of services, are considered to define the criticality index (CI). CI is used to classify all the districts of the country in the regions of high risk, low risk, and moderate risk. An online dashpot is created, which updates the data on daily bases for the next four weeks. The prospective suggestions of this study would aid in planning the strategies to apply the lockdown/ any other plan for any country, which can take other parameters to define the CI.


2021 ◽  
Vol 73 (01) ◽  
pp. 1-13

Seven state-of-the-art machine learning techniques for estimation of construction costs of reinforced-concrete and prestressed concrete bridges are investigated in this paper, including artificial neural networks (ANN) and ensembles of ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) method, and Gaussian process regression (GPR). A database of construction costs and design characteristics for 181 reinforced-concrete and prestressed-concrete bridges is created for model training and evaluation.


2021 ◽  
Author(s):  
Arsalan Mahmoodzadeh ◽  
Mokhtar Mohammadi

Abstract Because of the disasters associated with slope failure, the analysis and forecasting of slope stability for geotechnical engineers are crucial. In this work, in order to forecast the factor of safety (FOS) of the slopes, six machine learning (ML) techniques of Gaussian process regression (GPR), support vector regression (SVR), decision trees (DT), long-short term memory (LSTM), deep neural networks (DNN), and K-nearest neighbors (KNN) were performed. A total of 327 slope cases in Iran with various geometric and shear strength parameters analyzed by PLAXIS software to evaluate their FOS, were employed in the models. The K-fold (K=5) cross-validation (CV) method was applied to evaluate the performance of models’ prediction. Finally, all the models produced acceptable results and almost close to each other. However, the GPR model with R2 = 0.8139, RMSE = 0.160893, and MAPE = 7.209772%, was the most accurate model to predict slope stability. Also, the backward selection method was applied to evaluate the contribution of each parameter in the prediction problem. The results showed that all the features considered in this study have significant contributions to slope stability. However, features φ (friction angle) and γ (unit weight) were the most effective and least effective parameters on slope stability, respectively.


2019 ◽  
Vol 12 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Nivedhitha Mahendran ◽  
Durai Raj Vincent

Background: Major Depressive Disorder (MDD) in simple terms is a psychiatric disorder which may be indicated by having mood disturbances which are consistent for more than a few weeks. It is considered a serious threat to psychophysiology which when left undiagnosed may even lead to the death of the victim so it is more important to have an effective predictive model. The major Depressive disorder is often termed as comorbid medical condition (medical condition that co-occurs with another), it is hardly possible for the physicians to predict that the victim is under depression, timely diagnosis of MDD may help in avoiding other comorbidities. Machine learning is a branch of artificial intelligence which makes the system capable of learning from the past and with that experience improves the future results even without programming explicitly. As in recent days because of the high dimensionality of features, the accuracy of the predictions is comparatively low. In order to get rid of redundant and unrelated features from the data and improve the accuracy, relevant features must be selected using effective feature selection methods. Objective: This study aims to develop a predictive model for diagnosing the Major Depressive Disorder among the IT professionals by reducing the feature dimension using feature selection techniques and evaluate them by implementing three machine learning classifiers such as Naïve Bayes, Support Vector Machines and Decision Tree. </P><P> Method: We have used Random Forest based Recursive Feature Elimination technique to reduce the feature dimensions. Results: The results show a considerable increase in prediction accuracy after applying feature selection technique. Conclusion: From the results, it is implied that the classification algorithms perform better after reducing the feature dimensions.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1734 ◽  
Author(s):  
Samit Thapa ◽  
Zebin Zhao ◽  
Bo Li ◽  
Lu Lu ◽  
Donglei Fu ◽  
...  

Although machine learning (ML) techniques are increasingly popular in water resource studies, they are not extensively utilized in modeling snowmelt. In this study, we developed a model based on a deep learning long short-term memory (LSTM) for snowmelt-driven discharge modeling in a Himalayan basin. For comparison, we developed the nonlinear autoregressive exogenous model (NARX), Gaussian process regression (GPR), and support vector regression (SVR) models. The snow area derived from moderate resolution imaging spectroradiometer (MODIS) snow images along with remotely sensed meteorological products were utilized as inputs to the models. The Gamma test was conducted to determine the appropriate input combination for the models. The shallow LSTM model with a hidden layer achieved superior results than the deeper LSTM models with multiple hidden layers. Out of seven optimizers tested, Adamax proved to be the aptest optimizer for this study. The evaluation of the ML models was done by the coefficient of determination (R2), mean absolute error (MAE), modified Kling–Gupta efficiency (KGE’), Nash–Sutcliffe efficiency (NSE), and root-mean-squared error (RMSE). The LSTM model (KGE’ = 0.99) enriched with snow cover input achieved the best results followed by NARX (KGE’ = 0.974), GPR (KGE’ = 0.95), and SVR (KGE’ = 0.949), respectively. The outcome of this study proves the applicability of the ML models, especially the LSTM model, in predicting snowmelt driven discharge in the data-scant mountainous watersheds.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2386 ◽  
Author(s):  
Laura García Cuenca ◽  
Javier Sanchez-Soriano ◽  
Enrique Puertas ◽  
Javier Fernandez Andrés ◽  
Nourdine Aliane

This article presents a machine learning-based technique to build a predictive model and generate rules of action to allow autonomous vehicles to perform roundabout maneuvers. The approach consists of building a predictive model of vehicle speeds and steering angles based on collected data related to driver–vehicle interactions and other aggregated data intrinsic to the traffic environment, such as roundabout geometry and the number of lanes obtained from Open-Street-Maps and offline video processing. The study systematically generates rules of action regarding the vehicle speed and steering angle required for autonomous vehicles to achieve complete roundabout maneuvers. Supervised learning algorithms like the support vector machine, linear regression, and deep learning are used to form the predictive models.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2020 ◽  
Author(s):  
Azhagiya Singam Ettayapuram Ramaprasad ◽  
Phum Tachachartvanich ◽  
Denis Fourches ◽  
Anatoly Soshilov ◽  
Jennifer C.Y. Hsieh ◽  
...  

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew’s correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


Sign in / Sign up

Export Citation Format

Share Document