scholarly journals The Role of Geological Models and Uncertainties in Safety Assessments

Author(s):  
Merle Bjorge ◽  
Phillip Kreye ◽  
Elisa Heim ◽  
Florian Wellmann ◽  
Wolfram Rühaak

Abstract Safety assessments in nuclear waste management typically include the analysis of thermo-mechanical (TM) coupled processes. The TM behavior of the host rock is, amongst other aspects, dependent on the prevalent geological geometry. This study aims to evaluate the impact of uncertainties in geometry on the TM rock behavior. It is one of the very first studies aiming to bring uncertainties of structural geological models and numerical simulations together.To analyze the influence of geological geometries, a simplified model of the region around the Mont Terri rock laboratory was created. A 3-D structural geological model was set up and uncertainties of the lithological contacts were quantified by means of stochastic simulations, resulting in an ensemble of 89 model realizations. These realizations were transformed to a 2-D numerical model. In this numerical model, TM simulations were computed over a simulation time of 500 years, employing the Finite Element Method. To simulate a heat source of nuclear waste the lower edge of the model was set to 100°C.The results of these simulations show mean temperature variations of 90.89 °C and 92.70 ° after 500 years, with a maximum stress varying between 0.02 MPa and 0.16 MPa of elastic shear energy density and according mean cumulative displacements ranging from 30 cm to 38 cm. The presented results indicate that different model geometries and differences in material properties lead to noticeable variabilities of the TM behavior of claystone. However in this case, these variabilities would not significantly affect the integrity of the rock.

2021 ◽  
Author(s):  
Matias Alonso ◽  
Jean Vaunat ◽  
Minh-Ngoc Vu ◽  
Antonio Gens

<p>Argillaceous rocks have great potential as possible geological host medium to store radioactive waste.  Andra is leading the design of a deep geological nuclear waste repository to be located in the Callovo-Oxfordian formation. In the framework of this project, excavations of large diameter galleries are contemplated to access and to store intermediate-level long-lived nuclear waste at repository main level. The closure of the repository will be realized by building sealing structures of expansive material.</p><p>The response of such structures is affected by several thermo-hydro-mechanical coupled processes taking place in the near and far field of the argillaceous formations. They include the formation of an excavation induced damaged zone around the galleries, the impact of the thermal load on host rock pressures and deformations, the long-term interaction with support concrete structural elements and the hydration and swelling of sealing materials. As a result, the study of their performance requires to perform simulation works of increasing complexity in terms of coupling equations, problem geometry and material behaviour. As well, challenging computational aspects, as the ones related to fractures creation and propagation, have to be considered for a representative analysis of the problem.</p><p>This work presents advanced large scale THM numerical models to provide keys about the response of the host rock around large diameter galleries during excavation and further thermal load as well as to analyse the performance of large diameter sealing structures. Particular features of the models include on one hand advanced constitutive laws to capture the development of the fractured zone around excavations, the behaviour of host rock/gallery support interfaces and the multi-scale response of bentonitic backfill. On the other hand, simulations consider geometries including constructive details of interest at decimetre scale within large discretization domain covering the whole formation stratigraphic column.</p><p>These challenging simulations provided qualitative and quantitative results on key aspects for natural and engineered barrier integrity, like extension of the damaged zone, impact of the thermal load and water pressure variations in the surrounding geological layers, duration of natural hydration phase, swelling pressure development and seals global stability.</p>


2021 ◽  
Vol 1 ◽  
pp. 141-142
Author(s):  
Naila Ait-Mouheb ◽  
Yuankai Yang ◽  
Luc R. Van Loon ◽  
Martin A. Glaus ◽  
Guido Deissmann ◽  
...  

Abstract. The assessment of the safety of a deep geological repository (DGR) for high-level radioactive wastes over assessment time scales of up to 1 million years requires an in-depth understanding of the multi-scale coupled processes that affect the repository system evolution over time, to reduce uncertainties and conservatism in safety analyses. This is in particular required with respect to the challenges of a comparative assessment of different repository concepts in different host rocks within the process of a site selection for a DGR for heat-generating radioactive wastes in Germany. The collaborative project “Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis (iCross)” conducted jointly by five research centres of the Helmholtz Association and co-funded by the Initiative and Networking Fund of the Helmholtz Association and the Federal Ministry of Education and Research (BMBF) has been initiated with the overall objective to improve the understanding of coupled thermal-hydraulic-mechanical-chemical-(micro)biological (THMCB) processes and to develop simulation tools that enable a holistic close to reality description of the long-term evolution of the repository system. Geological formations, such as those foreseen as potential host rocks for DGRs, and their surroundings are heterogeneous on various length scales ranging from nanometers to kilometers. Therefore, the aim of this work in the context of iCross is to evaluate the effects of mineralogical, geochemical and microstructural heterogeneities of repository host rocks on radionuclide transport in the repository far field, using the sandy facies of the Opalinus clay (SF-OPA) from the Mont Terri underground research laboratory (St. Ursanne, Switzerland) as an example. Here, we address in particular the migration behaviour of Ra-226 as an important radionuclide to be considered in safety cases for deep geological disposal of spent nuclear fuel. To assess the impact of the heterogeneities in SF-OPA on radionuclide transport, a complementary approach combining microstructural characterisation methods, experimental techniques for the determination of transport parameters of the rock matrix and the mobility of Ra-226 with innovative developments in reactive transport modelling on the pore and continuum scales was pursued. One of the results was that although the limited clay content in SF-OPA decreases the total amount of Ra bound to the illite phase, the solid solutions of sulphate and carbonate compensate for this and provide a major fixation mechanism.


2021 ◽  
Vol 1 ◽  
pp. 79-81
Author(s):  
Gesa Ziefle ◽  
Tuanny Cajuhi ◽  
Sebastian Condamin ◽  
Stephan Costabel ◽  
Oliver Czaikowski ◽  
...  

Abstract. A potential repository site for high-level radioactive waste should ensure the highest possible safety level over a period of one million years. In addition to design issues, demonstrating the integrity of the barrier is essential as it ensures the long-term containment of radioactive waste. Therefore, a multi-disciplinary approach is necessary for the characterization of the surrounding rock and for the understanding of the occurring physical processes. For site selection, however, the understanding of the respective system is essential as well: Do fault zones exist in the relevant area? Are these active and relevant for interpreting system behavior? What is the role of the existing heterogeneities of the claystone and how do these site-dependent conditions influence the physical effects? To answer these questions, the site-selection procedure requires underground exploration, which includes geophysical and geological investigations on milli- to decameter scales. Their results serve as the basis for numerical modelling. This combined, multi-disciplinary interpretation requires extensive knowledge of the various methods, their capabilities, limitations, and areas of application. In the cyclic deformation (CD-A) experiment in the Mont Terri rock laboratory, the hydraulic–mechanical effects due to excavation and the climatic conditions within the rock laboratory are investigated in two niches in the Opalinus Clay. The twin niches differ mainly with regard to the relative humidity inside them, but are also characterized by different boundary conditions such as existing fault zones, the technical construction of the neighboring gallery, etc. In order to gain insights into the relevance of the individual influences, comparative studies are being carried out on both niches. The presented results provide a first insight into the initial experimental years of the CD-A long-term experiment and illustrate the benefits of multi-disciplinary investigations in terms of system understanding and the scale dependency of physical effects. Amongst other effects, the assessment of the impact of heterogeneities on the deformation behavior and the evolution of pore water pressure is very complex and benefits from geological interpretation and measurements of for example deformation, water content, and pore pressure. The numerical modeling allows statements about the interaction of different processes and thus enables an interpretation of the overall system, taking into account the knowledge gained by the multi-disciplinary investigation.


2021 ◽  
Vol 1 ◽  
pp. 85-87
Author(s):  
Dirk Bosbach ◽  
Horst Geckeis ◽  
Frank Heberling ◽  
Olaf Kolditz ◽  
Michael Kühn ◽  
...  

Abstract. The interdisciplinary project “Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis (iCROSS)” combines research competencies of Helmholtz scientists related to the topics of nuclear, geosciences, biosciences and environmental simulations in collaborations overarching the research fields energy and earth and environment. The focus is to understand and analyze close-to-real long-term evolutionary pathways of radioactive waste repositories across nanoscales to repository scales. The project is subdivided into work packages dealing with laboratory studies, field experiments in underground research laboratories (URLs), advanced modelling studies and the integration and alignment of data and information using virtual reality methods. In this sense, the project structure aims at a holistic view on relevant processes across scales in order to comprehensively simulate potential repository evolutions. Within the multi-barrier system of a repository for heat-generating radioactive waste, a number of complex reactions proceed, including dissolution, redox processes, biochemical reactions, gas evolution and solid/liquid interface and (co)precipitation reactions. At the same time, thermal and external mechanical stress has an impact on the conditions in a deep geological repository. All those processes are highly coupled, with multiple interdependencies on various scales and have a strong impact on radionuclide mobility and retention. In recent years, substantial progress was achieved in describing coupled thermal-hydro-mechanical-chemical-biological (THM/CB) processes in numerical simulations. A realistic and concise description of these coupled processes on different time and spatial scales is, at present, a largely unresolved scientific and computational challenge. The close interaction of experimental and simulation teams aims at a more accurate quantification and assessment of processes and thus, the reduction of uncertainties and of conservative assumptions and eventually to a close-to-real perception of the repository evolution. One focus of iCROSS is directed to relevant processes in a clay rock repository. In this context, the iCROSS team became a full member of the international Mont Terri consortium and worked in close collaboration with international and German institutions in URL projects. Respective experiments specifically deal with coupled processes at the reactive interfaces in a repository near field (e.g. the steel/bentonite and bentonite/concrete interfaces). Within iCROSS, the impact of secondary phase formation on radionuclide transport is investigated. At Mont Terri, experiments are in preparation to study radionuclide transport phenomena in clay rock formations within temperature gradients and in facies exhibiting significant heterogeneities on different scales (nm to cm). Beside those studies, high resolution exploration methods for rock characterization are developed and tested and the effect of temperature and other boundary conditions on the strength, creep properties and healing of faults within Opalinus clay are quantified. Multiphysics models coupled to reactive transport simulation have been further developed and applied to laboratory and field experiments. Results are digitally analyzed and illustrated in a visualization center, in order to enhance the comprehension of coupled processes in repository systems across scales. The present contribution provides an overview on the project and reports selected results. The impact of considering complex coupled processes in repository subsystems for the assessment of the integrity of a given (generic) repository arrangement is discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ting Yang ◽  
Hans Mattsson ◽  
Roland Pusch ◽  
Jan Laue ◽  
Sven Knutsson ◽  
...  

One of the major challenges of high-level nuclear waste (HLW) isolation in deep boreholes is to anticipate the maturation behaviour of swelling clay when the waste, surrounded by dense clay encased in perforated tubes, is submerged into the borehole mud. The ultimate homogeneity of this clay seal acting as a barrier is expected to stabilize the borehole and to prevent possible leakage of radioactivity. In this study, a numerical model for predicting the maturation of the clay barrier has been developed. In the model, the water transport is controlled by the differences in the suction potential and the permeability. The model is able to simulate the maturation process, both the expeditious water transport and the clay migration into the surrounding mud, from beginning to end. Results from laboratory tests of the clay maturation were compared with the predictions made by the model. They are in good agreement, but refinement is proposed by taking the impact of the tube perforation on the maturation rate into more consideration. The proposed numerical model will also be useful in selecting a suitable design for clay barriers in HLW boreholes. Different combinations of clay dimensions and initial densities of mud and dense clay can thus be studied to determine the final homogenization and the end densities.


2018 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Murisal Murisal

Motif and Impact of Early Marriage in Indarung Ngalau Batu Gadang.Penelitian is motivated by teenagers who married early on. Today, young men and women have a tendency to be less prepared to enter the home life, they are only ready to marry (ready here can be interpreted, maturity in terms of financial, understand what the meaning of marriage according to marriage law) is the bond of inner birth between a man and a woman as husband and wife for the purpose of forming a happy and eternal family (household) based on the Supreme Godhead while they are not ready to set up a home, whereas to build a household requires preparation both physically and spiritually . The purpose of this study to determine the motives underlying adolescents to make early marriage and the impact caused in the household as a result of the marriage.


Author(s):  
Mark Burden

Much eighteenth-century Dissenting educational activity was built on an older tradition of Puritan endeavour. In the middle of the seventeenth century, the godly had seen education as an important tool in spreading their ideas but, in the aftermath of the Restoration, had found themselves increasingly excluded from universities and schools. Consequently, Dissenters began to develop their own higher educational institutions (in the shape of Dissenting academies) and also began to set up their own schools. While the enforcement of some of the legal restrictions that made it difficult for Dissenting institutions diminished across the eighteenth century, the restrictions did not disappear entirely. While there has been considerable focus on Dissenting academies and their contribution to debates about doctrinal orthodoxy, the impact of Dissenting schools was also considerable.


The theory of the vibrations of the pianoforte string put forward by Kaufmann in a well-known paper has figured prominently in recent discussions on the acoustics of this instrument. It proceeds on lines radically different from those adopted by Helmholtz in his classical treatment of the subject. While recognising that the elasticity of the pianoforte hammer is not a negligible factor, Kaufmann set out to simplify the mathematical analysis by ignoring its effect altogether, and treating the hammer as a particle possessing only inertia without spring. The motion of the string following the impact of the hammer is found from the initial conditions and from the functional solutions of the equation of wave-propagation on the string. On this basis he gave a rigorous treatment of two cases: (1) a particle impinging on a stretched string of infinite length, and (2) a particle impinging on the centre of a finite string, neither of which cases is of much interest from an acoustical point of view. The case of practical importance treated by him is that in which a particle impinges on the string near one end. For this case, he gave only an approximate theory from which the duration of contact, the motion of the point struck, and the form of the vibration-curves for various points of the string could be found. There can be no doubt of the importance of Kaufmann’s work, and it naturally becomes necessary to extend and revise his theory in various directions. In several respects, the theory awaits fuller development, especially as regards the harmonic analysis of the modes of vibration set up by impact, and the detailed discussion of the influence of the elasticity of the hammer and of varying velocities of impact. Apart from these points, the question arises whether the approximate method used by Kaufmann is sufficiently accurate for practical purposes, and whether it may be regarded as applicable when, as in the pianoforte, the point struck is distant one-eighth or one-ninth of the length of the string from one end. Kaufmann’s treatment is practically based on the assumption that the part of the string between the end and the point struck remains straight as long as the hammer and string remain in contact. Primâ facie , it is clear that this assumption would introduce error when the part of the string under reference is an appreciable fraction of the whole. For the effect of the impact would obviously be to excite the vibrations of this portion of the string, which continue so long as the hammer is in contact, and would also influence the mode of vibration of the string as a whole when the hammer loses contact. A mathematical theory which is not subject to this error, and which is applicable for any position of the striking point, thus seems called for.


Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 31
Author(s):  
Jeremy Arancio ◽  
Ahmed Ould El Moctar ◽  
Minh Nguyen Tuan ◽  
Faradj Tayat ◽  
Jean-Philippe Roques

In the race for energy production, supplier companies are concerned by the thermal rating of offshore cables installed in a J-tube, not covered by IEC 60287 standards, and are now looking for solutions to optimize this type of system. This paper presents a numerical model capable of calculating temperature fields of a power transmission cable installed in a J-tube, based on the lumped element method. This model is validated against the existing literature. A sensitivity analysis performed using Sobol indices is then presented in order to understand the impact of the different parameters involved in the heating of the cable. This analysis provides an understanding of the thermal phenomena in the J-tube and paves the way for potential technical and economic solutions to increase the ampacity of offshore cables installed in a J-tube.


Sign in / Sign up

Export Citation Format

Share Document