scholarly journals Anti-Diabetic Activity of Silver Nanoparticles Synthesized From The Hydroethanolic Extract of Myristica Fragrans Seeds

Author(s):  
Ramya P ◽  
Lavanya Krishnadhas

Abstract Myristica fragrans, also known as nutmeg is a spice that cures various diseases. This study aimed to synthesize silver nanoparticles from a hydroethanolic extract of Myristica fragrans seeds (MFHE) and evaluate their anti-diabetic properties. To MFHE, AgNO3 solution was added and exposed to sunlight to produce silver nanoparticles from hydroethanolic seed extract of Myristica fragrans (MFHENP). The MFHENP was characterized by numerous techniques. UV-visible spectroscopy confirmed the formation of silver nanoparticles by the absorption peak at 430nm. Scanning electron microscopy (SEM) studies revealed the shape and size of the particles at the range of 50-60nm. Energy-dispersive X-ray spectroscopy (EDX) disclosed the presence of silver ions. X-ray diffraction spectrum confirmed the crystalline nature of silver nanoparticles by the peak at 39o. FTIR analysis revealed the functional groups present in MFHE as well as in MFHENP and Zeta potential analysis was found to be 14mV. Furthermore, in-vitro anti-diabetic activity was investigated. MFHENP showed significant efficiency against the inhibition of alpha-amylase and alpha-glucosidase enzymes and also MFHENP retarded the glucose transport across the membrane which is analyzed by glucose diffusion and glucose uptake assays. Acarbose is used as a standard for all these methods and MFHENP efficiency proves their therapeutic potential for the treatment of diabetes mellitus.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Palem Ramasubba Reddy ◽  
Shimoga D. Ganesh ◽  
Nabanita Saha ◽  
Oyunchimeg Zandraa ◽  
Petr Sáha

Bioreduction of silver ions following one pot process is described to achieveRheum rhabarbarum(RR) based silver nanoparticles (SNPs) which is termed as “RR-SNPs.” The Ultraviolet–visible spectroscopy (UV–vis) confirms the characteristic surface plasmon resonance band for RR-SNPs in the range of 420–460 nm. The crystalline nature of SNPs was confirmed by X-ray diffraction (XRD) peaks at 38.2°, 45.6°, 64.2°, and 76.8°. Transmission electron microscopy (TEM) and scanning electronic microscopy (SEM) confirm the shape of synthesized SNPs. They are roughly spherical but uniformly distributed, and size varies from 60 to 80 nm. These biogenic SNPs show persistent zeta potential value of 34.8 mV even after 120 days and exhibit potent antibacterial activity in presence ofEscherichia coli(CCM 4517) andStaphylococcus aureus(CCM 4516). In addition, cytotoxicity of RR-SNPs againstin vitrohuman epithelial carcinoma (HeLa) cell line showed a dose-response activity. The lethal concentration (LC50) value was found to be 28.5 μg/mL for RR-SNPs in the presence of HeLa cells. These findings help us to evaluate their appropriate applications in the field of nanotechnology and nanomedicine.


Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 38 ◽  
Author(s):  
Maria Sindhura John ◽  
Joseph Amruthraj Nagoth ◽  
Kesava Priyan Ramasamy ◽  
Alessio Mancini ◽  
Gabriele Giuli ◽  
...  

The synthesis of silver nanoparticles (AgNPs) by microorganisms recently gained a greater interest due to its potential to produce them in various sizes and morphologies. In this study, for AgNP biosynthesis, we used a new Pseudomonas strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. After incubation of Pseudomonas cultures with 1 mM of AgNO3 at 22 °C, we obtained AgNPs within 24 h. Scanning electron (SEM) and transmission electron microscopy (TEM) revealed spherical polydispersed AgNPs in the size range of 20–70 nm. The average size was approximately 50 nm. Energy dispersive X-ray spectroscopy (EDS) showed the presence of a high intensity absorption peak at 3 keV, a distinctive property of nanocrystalline silver products. Fourier transform infrared (FTIR) spectroscopy found the presence of a high amount of AgNP-stabilizing proteins and other secondary metabolites. X-ray diffraction (XRD) revealed a face-centred cubic (fcc) diffraction spectrum with a crystalline nature. A comparative study between the chemically synthesized and Pseudomonas AgNPs revealed a higher antibacterial activity of the latter against common nosocomial pathogen microorganisms, including Escherichia coli, Staphylococcus aureus and Candida albicans. This study reports an efficient, rapid synthesis of stable AgNPs by a new Pseudomonas strain with high antimicrobial activity.


2018 ◽  
Vol 13 ◽  
pp. 117739011878287 ◽  
Author(s):  
Sitaramanjaneya Reddy Guntur ◽  
NS Sampath Kumar ◽  
Manasa M Hegde ◽  
Vijaya R Dirisala

The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) from the leaf extract of Desmostachya bipinnata (Dharba), a medicinally important herb which is widely used across India. Synthesized AgNPs were analyzed by UV-Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDAX). The results have confirmed that green synthesis of AgNPs leads to the fabrication of sphere-shaped particles with a diameter of 53 nm. Furthermore, these AgNPs were subjected to antioxidant and antimicrobial studies against gram-negative and gram-positive bacteria, where AgNPs at a concentration of 20 mg/mL showed highest zone of inhibition. Synthesized AgNPs were evaluated for their antioxidant activity by 1, 1-diphenyl-2-picryl hydrazyl radical (DPPH), H2O2, and superoxide inhibiting assays; increasing concentration has showed increase in scavenging ability. Cell toxicity was assessed on HepG2 cell lines, and synthesized nanoparticles at a concentration of 128 μg/mL produced significant reduction in viability of Hep cells ( P < .05). The availability of Dharba throughout the year and the eco-friendly approach in the synthesis of AgNPs coupled with bioactivity has demonstrated its potential as a novel biomaterial which can be used for various biomedical applications.


Author(s):  
Walid A. Lotfy ◽  
Basma M. Alkersh ◽  
Soraya A. Sabry ◽  
Hanan A. Ghozlan

In this study, mycelial filtrate of Aspergillus terreus BA6 was used to reduce AgNO3 to form silver nanoparticles (AgNPs). The effect of seven independent variables on the diameter of AgNPs was studied by applying design of experiments (DOE). At optimal conditions, the diameter of AgNPs was reduced by approximately 26.7% compared to the basal culture condition and AgNO3 concentration was found to be the most significant factor affecting the diameter of AgNPs. A. terreus nano-Ag was characterized using UV-visible spectroscopy, transmission electron microscopy, energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zeta potential. The maximum UV absorption was obtained at 420 nm and the microscopic results showed particles with narrow size distribution ranging from 7 to 23 nm. XRD pattern of AgNPs revealed four diffraction peaks of metallic silver and the EDX spectrum showed a strong signal attributed to Ag nano-crystals. AgNPs mycofabricated by A. terreus showed potent minimum inhibitory concentration (MIC) and broad minimum bactericidal/fungicidal concentration (MBC/MFC) against 12 reference microorganisms. The MIC and MBC/MFC values of AgNPs were 0.312 to 1.25 μg/ml and 0.625 to 10 μg/ml, respectively. Nevertheless, AgNPs did not demonstrate any antagonistic activity against Coxsackie B virus. The in vitro cytotoxicity of the mycosynthesized AgNPs showed significant antitumor activity against adenocarcinoma epithelial cells from human breast cancer (Mcf-7) cell line with an inhibitory concentration (IC50) of 87.5 μg/ml.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hessa H. Al-Rasheed ◽  
Kholood A. Dahlous ◽  
Essam N. Sholkamy ◽  
Sameh M. Osman ◽  
Omar H. Abd-Elkader ◽  
...  

Herein, we described the modification of chitosan with cyanuric chloride as a mediator for preparation of chitosan-s-triazinyl-bis(2-aminomethylpyridine) and chitosan-s-triazinyl-bis(8-oxyquinoline) derivatives to be used as reagents for preparation of silver nanoparticles under ecofriendly conditions. These two reagents are convenient and effective for reduction of silver ions to silver nanoparticles with particle size less than 10 nm that might be suitable for industrial and medicinal applications. The formation and particle size of AgNPs are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray analysis (EDX). The antimicrobial activity of the two modified chitosan-s-triazine-AgNPs was evaluated against activities against Gram-positive bacteria (M. luteus ATCC 10240 and MRSA ATCC 43300), Gram-negative bacteria (E. coli ATCC 25922 and P. aeruginosa ATCC 75853), and C. albicans. The results showed that chitosan-s-triazinyl-bis(2-aminomethylpyridine) AgNPs showed high antimicrobial activities against all the tested microorganisms, while their analogous chitosan-s-triazinyl-bis(8-oxyquinoline) AgNPs showed moderate activities.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Author(s):  
X Li ◽  
D Li ◽  
B Lu ◽  
L Wang ◽  
Z Wang

The ability to have precise control over internal channel architecture, porosity, and external shape is essential for tissue engineering. The feasibility of using indirect stereo-lithography (SL) to produce scaffolds from calcium phosphate cement materials for bone tissue engineering has been investigated. The internal channel architecture of the scaffolds was created by removal of the negative resin moulds made with SL. Scanning electron microscopy (SEM) showed highly open, well-interconnected channel architecture. The X-ray diffraction examination revealed that the hydroxyapatite phase formed at room temperature in the cement was basically stable up to 850 °C. There was no phase decomposition of hydroxyapatite, although the crystallinity and grain size were different. The ability of resulting structure to support osteoblastic cells culture was tested in vitro. Cells were evenly distributed on exterior surfaces and grew into the internal channels of scaffolds. To exploit the ability of this technique, anatomically shaped femoral supracondylar scaffolds with 300-800 μm interconnected channels were produced and characterized.


2007 ◽  
Vol 86 (1) ◽  
pp. 69-72 ◽  
Author(s):  
M. Kida ◽  
Y. Sakiyama ◽  
A. Matsuda ◽  
S. Takabayashi ◽  
H. Ochi ◽  
...  

Amelogenesis imperfecta (AI) is a hereditary disease with abnormal dental enamel formation. Here we report a Japanese family with X-linked AI transmitted over at least four generations. Mutation analysis revealed a novel mutation (p.P52R) in exon 5 of the amelogenin gene. The mutation was detected as heterozygous in affected females and as hemizygous in their affected father. The affected sisters exhibited vertical ridges on the enamel surfaces, whereas the affected father had thin, smooth, yellowish enamel with distinct widening of inter-dental spaces. To study the pathological cause underlying the disease in this family, we synthesized the mutant amelogenin p.P52R protein and evaluated it in vitro. Furthermore, we studied differences in the chemical composition between normal and affected teeth by x-ray diffraction analysis and x-ray fluorescence analysis. We believe that these results will greatly aid our understanding of the pathogenesis of X-linked AI.


2010 ◽  
Vol 17 (02) ◽  
pp. 153-157 ◽  
Author(s):  
N. R. HA ◽  
Z. X. YANG ◽  
G. C. KIM ◽  
K. H. HWANG ◽  
D. S. SEO ◽  
...  

Titanium alloys are superior of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect between human tissue and implant. Therefore, the purpose of this study is to investigate the bioactivity of Ti alloy by alkali and acid chemical surface treatment; and the biocompatibility of Ti alloy was evaluated by in vitro test. Higher bone-bonding ability and bioactivity of the substrate were obtained by the formation of apatite layers on the Ti alloy in simulated body fluid. The microstructures of apatite layer were investigated by scanning electron microscope (SEM) and the formed phases were analyzed with X-ray diffraction (XRD).


2015 ◽  
Vol 638 ◽  
pp. 67-72
Author(s):  
Ana Maria Salantiu ◽  
Florin Popa ◽  
Petru Pascuta ◽  
Olga Soritau ◽  
Noemi Dirzu ◽  
...  

This work aims to investigate the influence of surface conditioning of porous Ti for enhancing its biological activity, as assessed by in vitro stem cell testing. Porous Ti samples with an average porosity of 32% were processed by Powder Metallurgy with dextrin as a space holder. The samples were subjected to H2O2 treatment to form an enhanced TiO2 film, followed by a heat treatment at 400°C and 600°C aiming to the crystallization of the as-formed amorphous titanium oxide. Samples characterization was performed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The treated surfaces revealed to be made of both anatase and rutile TiO2, with groove–shaped structure and cracks on the surface of the TiO2 film. The intrinsic biocompatibility of the chemically modified porous Ti surfaces was assessed in vitro. In our cell culture tests, stem cells were found to attach and proliferate better on the chemically treated Ti surfaces compared to the control untreated Ti surfaces.


Sign in / Sign up

Export Citation Format

Share Document