scholarly journals Glucocorticoid and Antibiotic Treatment-induced Recapitulated Hematological Remissions in Acute Myeloid Leukemia: Implications for Ligand-dependent Growth and Survival Advantage

Author(s):  
Xiao-Yun Sun ◽  
Shu-Xin Xiao ◽  
Xiao-Qiu Yang ◽  
Xiao-Dong Yang ◽  
Fan-Jun Meng ◽  
...  

Abstract Leukemia-transformed multipotential hematopoietic cells have acquired the increased self-renewal capacity and impaired myeloid differentiation to mature blood cells. The emergence of symptomatic leukemia also critically requires the acquisition of growth and survival advantage in leukemic cells. Untreated leukemia patients usually demonstrated a progressive process. However, spontaneous remission occasionally occurred in a very small number of leukemia patients, which frequently followed a febrile episode and antibiotic treatment and was generally attributed to the activation of anti-neoplastic activities. Here we report a 63-year-old Chinese man who presented with the main complaints of abdominal pain, febrile episode and urticaria-like skin lesions. He was diagnosed with acute myeloid leukemia (AML-M4) with t(8;21)(q22;q22)/RUNX1-RUNX1T1 on the basis of morphological, immunological, cytogenetic and molecular analysis. He also had a mutated FLT3-TKD gene. He was treated with antibiotics and glucocorticoid for the gastrointestinal infection and the urticaria-like skin lesions. The infection and skin lesions were quickly resolved. Unexpectedly, along with the relief of the febrile episode, abdominal symptoms and skin lesions, he achieved a hematological remission. After relapse, repeating this treatment resulted in the second hematological remission. These recapitulated treatment responses strongly suggested that inflammatory stresses arising from the gut inflammatory lesions, which could be largely mitigated by antibiotic and glucocorticoid treatment, sustained the growth and survival advantage of the leukemic cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4293-4293
Author(s):  
Cecilia Brunhoff ◽  
Jenny Ekblad ◽  
Jenny Liao Persson

Abstract Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that contributes to the regulation of hematopoietic stem cell development, extracellular matrix modelling and inflammatory cytokine generation. To study the potential role of VEGF in proliferation and apoptosis in acute myeloid leukemia, we evaluated the VEGF protein expression and its association with disease characteristics and patient outcome in 42 patients with acute myeloid leukemia (AML). In contrast to its weak expression in myeloid progenitors in normal bone marrows, high levels of VEGF expression was detected in 22 of the AML patients. Interestingly, VEGF expression significantly correlated with the expression of several major cell cycle regulatory proteins including cyclin A1, cyclin A2, cyclin E, CDK2 and p27. Log-rank test stratified by levels of VEGF expression revealed a clear trend with worse overall survival for patients with high levels of VEGF compared to those with low levels. Treatment of U-937 cells with recombinant VEGF protein resulted in an increased rate of proliferation. This suggested that VEGF may promote cell growth by mediating the cell cycle regulatory pathways. We further demonstrated that induced expression of VEGF promoted survival of leukemic cells and protected the cells from ATRA-induced apoptosis. Taken together, our studies demonstrated that increased expression of VEGF in AML patients was associated with worse patient outcome. Elevated levels of VEGF may contribute to the adverse outcome by promoting cell growth and survival of leukemic cells and reducing the sensitivity of leukemic cells to drug-induced apoptosis in AML patients.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 387-396
Author(s):  
Sing-Ting Wang ◽  
Chieh-Lung Chen ◽  
Shih-Hsin Liang ◽  
Shih-Peng Yeh ◽  
Wen-Chien Cheng

Abstract Pleural effusions are rarely observed in association with acute myeloid leukemia (AML), and their true incidence remains unknown. Given the low diagnostic yield from cytopathologic analysis of malignant pleural effusions and the fact that patients with leukemia are often thrombocytopenic and unable to tolerate invasive procedures, the incidence of leukemic effusions may be underestimated. Here, we report a rare case of pleural effusion in a patient with newly diagnosed AML. Initial analysis revealed an exudative, lymphocyte-predominant effusion. High levels of adenosine deaminase (ADA) were detected in pleural fluid, consistent with a diagnosis of tuberculosis. However, the analysis of pleural cytology revealed leukemic cells, permitting the diagnosis of leukemic effusion to be made. The patient underwent induction chemotherapy and pleural effusion resolved without recurrence. This case emphasizes the diagnostic dilemma presented by high levels of ADA in a leukemic pleural effusion, as this association has not been previously considered in the literature.


2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Duygu Mert ◽  
Gülşen Iskender ◽  
Fazilet Duygu ◽  
Alparslan Merdin ◽  
Mehmet Sinan Dal ◽  
...  

Invasive pulmonary aspergillosis is most commonly seen in immunocompromised patients. Besides, skin lesions may also develop due to invasive aspergillosis in those patients. A 49-year-old male patient was diagnosed with acute myeloid leukemia. The patient developed bullous and zosteriform lesions on the skin after the 21st day of hospitalization. The skin biopsy showed hyphae. Disseminated skin aspergillosis was diagnosed to the patient. Voricanazole treatment was initiated. The patient was discharged once the lesions started to disappear.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2527-2534 ◽  
Author(s):  
Christian Récher ◽  
Odile Beyne-Rauzy ◽  
Cécile Demur ◽  
Gaëtan Chicanne ◽  
Cédric Dos Santos ◽  
...  

AbstractThe mammalian target of rapamycin (mTOR) is a key regulator of growth and survival in many cell types. Its constitutive activation has been involved in the pathogenesis of various cancers. In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle. Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases. Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors. Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML. Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3091-3096 ◽  
Author(s):  
L Campos ◽  
JP Rouault ◽  
O Sabido ◽  
P Oriol ◽  
N Roubi ◽  
...  

The BCL-2 proto-oncogene encodes a mitochondrial protein that blocks programmed cell death. High amounts of bcl-2 protein are found not only in lymphoid malignancies, but also in normal tissues characterized by apoptotic cell death, including bone marrow. Using a monoclonal antibody to bcl-2 protein, we analyzed 82 samples of newly diagnosed acute myeloid leukemia. The number of bcl-2+ cells in each sample was heterogeneous (range, 0% to 95%), with a mean of 23%. The percentage of bcl-2+ cells was higher in M4 and M5 types, according to French- American-British classification, and in cases with high white blood cell counts. bcl-2 expression was also correlated with that of the stem cell marker CD34. In vitro survival of leukemic cells maintained in liquid culture in the absence of growth factors was significantly longer in cases with a high percentage of bcl-2+ cells. High expression of bcl-2 was associated with a low complete remission rate after intensive chemotherapy (29% in cases with 20% or more positive cells v 85% in cases with less than 20% positive cells, P < 10(-5)) and with a significantly shorter survival. In multivariate analysis, the percentage of bcl-2+ cells (or the blast survival in culture), age, and the percentage of CD34+ cells were independently associated with poor survival.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-7
Author(s):  
Quentin Fovez ◽  
Bruno Quesnel ◽  
William Laine ◽  
Raeeka Khamari ◽  
Celine Berthon ◽  
...  

Introduction The persistence of leukemic cells after treatment limits the effectiveness of anticancer drugs and is the cause of relapse in patients with acute myeloid leukemia (AML). After exposure to chemotherapeutic drugs, the survival of leukemic cells is mainly supported by mitochondrial energy metabolism. Several preclinical studies have shown that the combination of mitochondrial oxidative phosphorylation inhibitors with various anticancer treatments constitutes an effective therapeutic combination in vitro to eradicate the surviving leukemic cells. Evaluating the mitochondrial bioenergetic activity of blasts from AML patients could therefore provide predictive information on treatment response. The basal oxygen consumption of cells varies according to hematopoietic differentiation and depends on the energy needs in the in vitro condition of measurement. But it is necessary to treat the cells with uncoupling agents (eg FCCP) to assess the maximum activity that the respiratory chain could reach to respond to energy stress. Then, the switch from a basal level of oxygen consumption to a maximum level defines the mitochondrial spare reserve capacity (SRC). In this study, we propose to determine whether spare reserve capacity of blasts is a potential biomarker of AML aggressiveness in patients and to characterize the biochemical processes involved in the control of SRC in leukemic cells. Results Using the XFe24 Seahorse fluorometric oximeter, we first determined the mitochondrial oxygen consumption and glycolytic activity in hematopoietic cells (monocytes, lymphocytes, dendritic cells) of healthy donors, in AML patient blasts at diagnosis or at relapse and in AML cell lines (HL-60, MOLM-13, THP-1, KG1, OCI-AML3, MV-4-11, U-937). All measures have been assessed from freshly collected samples of peripheral blood and of bone marrow. As expected, AMLs are characterized by low oxidative phosphorylation activity compared to normal hematopoietic cells. From all the OXPHOS values obtained we defined a SRC threshold above which the SRC is considered high. This threshold has been set at a capacity to increase basal respiration by 250%. From patients blasts, we have therefore defined two groups characterized by high (n=14) or low (n=21) mitochondrial spare reserve capacity. Blasts with high SRC exhibit high glycolytic activity suggesting a link between spare reserve capacity and glucose metabolism. Using U-13C6 glucose and pharmacological inhibitors, we have demonstrated that the utilization of the mitochondrial spare reserve capacity of leukemic cells is supported through glycolysis and that mitochondrial oxidation of pyruvate is a key element for SRC recruitment. Mitochondrial pyruvate carrier inhibitors (as UK-5099) or gene silencing of BRP44 abolish the SRC of leukemic cells highlighting the importance of pyruvate oxidation to increase oxygen consumption. Since high mutation rate is recognized as an unfavorable prognostic factor in AML, we have also sequenced 45 commonly genes mutated in AMLs characterized by high or low SRC blasts. Interestingly, DNA sequencing analysis showed that AML with low SRC blasts have a higher mutation rate than high SRC blasts and also exhibited exclusive mutations such as ASXL1 (25%), IDH2 (25%), NPM1 (25%), IDH1 (13%), JAK2 (13%) and SF3B1 (13%). Conclusion Currently, most of the clinical biomarkers used to predict AML aggressiveness are based on DNA analysis, but the emergence of mutations is not always associated with phenotypic changes. This study shows that the mitochondrial spare reserve capacity of blasts represents a new functional biomarker based on the assessment of the energetic phenotype and could help the clinicians to determine the prognosis of AML. Moreover we have showed that altering pyruvate metabolism highly decrease spare reserve capacity of blasts and then could be evaluated as metabolic strategies to improve the therapeutic response in patients with AML. Disclosures Kluza: Daiichi-Sankyo: Research Funding.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Joseph D. Khoury ◽  
Mehrnoosh Tashakori ◽  
Hong Yang ◽  
Sanam Loghavi ◽  
Ying Wang ◽  
...  

RAF molecules play a critical role in cell signaling through their integral impact on the RAS/RAF/MEK/ERK signaling pathway, which is constitutively activated in a sizeable subset of acute myeloid leukemia (AML) patients. We evaluated the impact of pan-RAF inhibition using LY3009120 in AML cells harboring mutations upstream and downstream of RAF. LY3009120 had anti-proliferative and pro-apoptotic effects and suppressed pERK1/2 levels in leukemic cells with RAS and FLT3 mutations. Using reverse protein phase array analysis, we identified reductions in the expression/activation of cell signaling components downstream of RAF (activated p38) and cell cycle regulators (Wee1/cyclin B1, Cdc2/Cdk1, activated Rb, etc.). Notably, LY3009120 potentiated the effect of Ara-C on AML cells and overcame bone marrow mesenchymal stromal cell-mediated chemoresistance, with RAS-mutated cells showing a notable reduction in pAKT (Ser473). Furthermore, the combination of LY3009120 and sorafenib resulted in significantly higher levels of apoptosis in AML cells with heterozygous and hemizygous FLT3 mutations. In conclusion, pan-RAF inhibition in AML using LY3009120 results in anti-leukemic activity, and combination with Ara-C or sorafenib potentiates its effect.


Sign in / Sign up

Export Citation Format

Share Document