scholarly journals Pan-RAF Inhibition Shows Anti-Leukemic Activity in RAS-Mutant Acute Myeloid Leukemia Cells and Potentiates the Effect of Sorafenib in Cells with FLT3 Mutation

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Joseph D. Khoury ◽  
Mehrnoosh Tashakori ◽  
Hong Yang ◽  
Sanam Loghavi ◽  
Ying Wang ◽  
...  

RAF molecules play a critical role in cell signaling through their integral impact on the RAS/RAF/MEK/ERK signaling pathway, which is constitutively activated in a sizeable subset of acute myeloid leukemia (AML) patients. We evaluated the impact of pan-RAF inhibition using LY3009120 in AML cells harboring mutations upstream and downstream of RAF. LY3009120 had anti-proliferative and pro-apoptotic effects and suppressed pERK1/2 levels in leukemic cells with RAS and FLT3 mutations. Using reverse protein phase array analysis, we identified reductions in the expression/activation of cell signaling components downstream of RAF (activated p38) and cell cycle regulators (Wee1/cyclin B1, Cdc2/Cdk1, activated Rb, etc.). Notably, LY3009120 potentiated the effect of Ara-C on AML cells and overcame bone marrow mesenchymal stromal cell-mediated chemoresistance, with RAS-mutated cells showing a notable reduction in pAKT (Ser473). Furthermore, the combination of LY3009120 and sorafenib resulted in significantly higher levels of apoptosis in AML cells with heterozygous and hemizygous FLT3 mutations. In conclusion, pan-RAF inhibition in AML using LY3009120 results in anti-leukemic activity, and combination with Ara-C or sorafenib potentiates its effect.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1894-1894
Author(s):  
Christoph Schliemann ◽  
Ralf Bieker ◽  
Teresa Padro ◽  
Torsten Kessler ◽  
Heike Hintelmann ◽  
...  

Abstract Angiopoietin-1 (Ang-1) and its natural antagonist Angiopoietin-2 (Ang-2), both ligands for the receptor tyrosine kinase Tie2, are known to play an essential role in normal and pathological angiogenesis. However, the importance of angiopoietin signaling in the pathophysiology of hematologic neoplasias such as acute myeloid leukemia (AML) remains to be elucidated. We investigated the expression of Ang-1, Ang-2 and Tie2 by immunohistochemical analyses in bone marrow biopsies of 64 adult patients with newly diagnosed AML and correlated angiogenic factor expression with clinicopathological variables and long-term survival. Expression of Ang-2 was significantly increased in the bone marrow of AML patients (median [interquartile ranges]: 4.7 [3.3 – 5.7] AU [arbitrary units]) as compared with 16 control patients (1.5 [1.5 – 1.8] AU; P < 0.0001). In contrast, Ang-1 expression levels in AML patients did not differ from those found in controls. Thus, we observed a reversal of the Ang-1 and Ang-2 expression balance in the neoplastic bone marrow (Ang-2:Ang-1 ratio: 1.73) as compared with normal bone marrow (0.51; P < 0.0001). Furthermore, the angiopoietin receptor Tie2 was significantly overexpressed in leukemic blasts (3.8 [2.8 – 4.9] AU vs. 1.8 [1.6 – 2.3] AU; P < 0.0001). Patients expressing high levels of Ang-2 showed significantly longer overall survival (OS) than those with low Ang-2 levels (52.7 vs. 14.7 months; P = 0.039). The impact of Ang-2 expression on OS was especially evident in AML patients simultaneously expressing low levels of Ang-1 (P = 0.0298). Multivariate Cox regression analysis revealed karyotype and Ang-2 expression as independent prognostic factors for OS (hazard ratio [CI]: 3.06 [1.39 – 6.70] and 0.31 [0.14 – 0.69], respectively; P < 0.01). In conclusion, these data provide evidence that the alteration of angiopoietin balance in favor of Ang-2 may play a critical role in the pathophysiology of AML. Furthermore, high pre-therapeutic bone marrow Ang-2 levels indicate a favorable prognosis in polychemotherapy treated AML by a yet unknown mechanism.


2021 ◽  
Author(s):  
Dan Xu ◽  
Zhao Yin ◽  
Ying Yang ◽  
Yishan Chen ◽  
Changfen Huang ◽  
...  

Abstract Background: Autophagy plays a critical role in drug resistance in acute myeloid leukemia (AML), including the subtype with FLT3-ITD mutation. Yet how autophagy is activated and mediates resistance to FLT3 inhibitors in FLT3-ITD-positive AML remains unsure. Methods: We detected the alteration of autophagy in FLT3-ITD-positive leukemic cells after versus before acquired resistance to FLT3 inhibitors; tested the stimulative effect of acquired D835Y mutation and bone marrow micro-environment (BME) on autophagy; explored the mechanism of autophagy mediating FLT3 inhibitor resistance. Results: Sorafenib-resistant cells markedly overexpressed autophagy in comparison with sorafenib-sensitive cells or the cells before sorafenib treatment. Both acquired D835Y mutation and BME activated cytoprotective autophagy to induce FLT3 inhibitor resistance. Autophagy activation decreased the suppression efficacy of FLT3 inhibitors on FLT3 downstream signaling and then weakened their anti-leukemia effect. Inhibition of autophagy with CQ significantly enhanced the suppressive effect of FLT3 inhibitor on FLT3 downstream signaling, in the end overcame FLT3 inhibitor resistance. Conclusions: Autophagy might be stimulated by acquired mutation or BME, and bypass activate FLT3 downstream signaling to mediate FLT3 inhibitor resistance in FLT3-ITD-positive AML. Targeting autophagy could be a promising strategy to overcome resistance.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Fateme Moradi Moraddahande ◽  
Mona Shameli Houjghan ◽  
Amir-Mohammad Yousefi ◽  
Ava Safaroghli-Azar ◽  
Atieh Pourbagheri-Sigaroodi ◽  
...  

Background: The conservative character of the cell cycle outlined that any dysregulation in the regulatory components of this process in normal cells opens a gate toward neoplastic transformation. Objectives: Given the critical role of cyclin-dependent kinases (CDKs) in cancer pathogenesis and based on their frequent aberrancy in human leukemia, the present study aimed at evaluating the suppressive effect of a multi-CDK inhibitor AT7519 on acute myeloid leukemia-derived U937 cells. Methods: To assess the anti-leukemic effects of the inhibitor on acute myeloid leukemia (AML) cells, we used MTT and trypan blue assays. Flow cytometric analysis and q-RT-PCR were also applied to evaluate the impact of AT7519 on cell cycle and apoptosis. Results: The results suggested that suppression of CDK in U937 cells hampered the proliferation of leukemic cells through a G2/M arrest mediated by p21 gene. Additionally, the anti-survival impact of AT7519 on these cells was shown to be along with the apoptosis initiation not only through the increment of pro-apoptotic gene expression but also through diminishing the mRNA levels of both Pin1 and Survivin. Notably, the potent anti-leukemic property of this agent has become more prominent when we found that the blockage of CDKs in AML cells could synergize with the cytotoxic effect of vincristine (VCR). To the best of our knowledge, little is known about the molecular mechanisms of resistance to AT7519 and we proposed that the effectiveness of this agent was partially attenuated through either c-Myc or autophagy activation in U937 cells. Conclusions: This study suggests that the pharmacological targeting of CDKs could probably unwind the complexity of therapeutic obstacles on the way of acute leukemia, either in the context of mono- or combined-modal strategy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 659-659
Author(s):  
François Vergez ◽  
Jean-Emmanuel Sarry ◽  
Nathalie Gallay ◽  
Camille Fialin ◽  
Sarah Scotland ◽  
...  

Abstract Abstract 659 The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a critical role in a variety of tumor cells including hematological malignancies. Class IA PI3Ks are heterodimers that consist of a p85 regulatory and a p110 catalytic subunit. There are several isoforms of both the catalytic (p110α, p110β and p110δ) and regulatory subunits. The p110α isoform of the class IA PI3-Ks was recently genetically validated as a promising target for anticancer therapy. To date, only one compound (imidazo[1,2-a]pyridine, PIK-75) has been described as a very potent and selective inhibitor of this isoform (>100-fold selectivity over p110α and p110δ). In acute myeloid leukemia (AML), aberrant PI3-K activation is detectable in most of cases both in leukemic bulk and in the immature compartment of the leukemic clone. This activation contributes to cell growth, proliferation, survival, and drug-resistance. Furthermore, we have previously shown that the level of Akt phosphorylation on threonine 308, the major target of PI3-K, is correlated with poor outcome in AML patients (Gallay et al, Leukemia 2009, 23(6):1029-38). Therefore, effective targeting of this pathway with pharmacological inhibitors could improve therapeutic outcome in AML. Here, we studied the anti-neoplastic activity of several inhibitors of the PI3-K p110 subunits in AML cell lines and primary patient specimens. Treatment with PIK-75 led to a decrease of the proliferation in all cell lines at low dose (MTT assay, IC50: 62 nM, 144 nM, 173 nM in KG1, HL60 and KG1a cell lines, respectively). This inhibition of proliferation was due to massive apoptosis of KG1 and KG1a cells in both liquid culture but also after adhesion of leukemic cells on a fibronectin matrix. By contrast, p110ß (TGX221, 10 μM) and p110γ (AS252424, 10 μM) inhibitors only slightly decreased cell proliferation in KG1 and HL60 cells while p110δ inhibitor (IC87114) has no effect up to 10 μM. PIK-75 inhibited the phosphorylation of Akt on Thr308, and downstream effectors (4-EBP1 and RPS6) in these cells. These results strongly suggest a major role of p110α subunit which is highly express in AML cell lines and 19/19 patients samples. Next, we assessed the PIK-75 efficacy in 1 AML cell lines, 9 AML samples and 1 normal bone marrow CD34+ cells using clonogenic assays. PIK-75 inhibited AML-CFU in both KG1 cell line and all patient samples tested with an IC50 of 214 nM and 72 nM, respectively. Interestingly, PIK-75 has no effect on normal CFU-GM colonies, even at high dose (IC50 not reached at 1 μM), a result consistent with the normal haematopoiesis observed in p110αfnKO mice (Gritsman et al, Blood (ASH Annual Meeting Abstracts) 2009 114: Abstract 3620). Since leukemic subpopulation bearing the CD34+CD38-CD123+ phenotype is thought to be more resistant to chemotherapy than the leukemic bulk, we have assessed the apoptosis of 17 AML primary cells treated with increasing doses of cytarabine (Ara-C). We found significant differences of IC50 with 9.5 μM and 43 μM in bulk and CD34+38-123+ subpopulation, respectively. By contrast, PIK-75 demonstrated potent activity in both leukemic compartments of 42 AML samples with IC50 of 589 nM and 638 nM, respectively. Interestingly, the effect of PIK75 was not altered at relapse neither in bulk (IC50: 513 nM vs 492 nM at diagnosis and at relapse) nor in CD34+38-123+ subpopulation (IC50: 567 nM vs 254 nM at diagnosis and at relapse) in 8 AML samples. In NOD/SCID mice engrafted with HL60 cells, PIK-75 delivered at 1 and 10 mg/kg/d for 4 days induced a significant decrease in tumor burden after apoptosis induction detected ex vivo by annexin V staining. Further in vivo studies using NSG mice engrafted with primary AML specimens are ongoing. These results demonstrate that PIK-75 is the most potent inhibitor of PI3-K in leukemic cells suggesting that the selective inhibition of the p110α subunit could be a critical target in AML. Moreover, PIK-75 targets both leukemic bulk and chemoresistant leukemic subpopulations paving the way for clinical studies assessing the combination of selective p110α inhibitor with conventional chemotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2082-2082
Author(s):  
Dominik Schnerch ◽  
Julia Felthaus ◽  
Monika Engelhardt ◽  
Ralph M. Waesch

Abstract Genetic instability including aneuploidy is frequent in most cancers. The spindle assembly checkpoint (SAC) is a mitotic surveillance mechanism responsible for accurate chromosome segregation. Unattached chromosomes or lack of spindle tension are sensed by the SAC. The activated SAC inhibits the ubiquitin-ligase anaphase-promoting complex (APC), which prevents the proteolysis of cell cycle regulators in order to delay progression through mitosis and allow cells to recover from defective mitotic spindle attachment. Spindle checkpoint malfunction proved to favor the generation of aneuploidy. In our recent work we investigated the roles of essential SAC proteins in acute myeloid leukemia (AML). We found the SAC-protein Bub1 to be posttranscriptionally downregulated in all investigated AML cell lines. As a consequence, after exposure to the microtubule disrupting agent nocodazole we observed a defective mitotic delay mechanism in comparison to SAC-competent cell lines and increased apoptosis consistent with the effects of Bub1 downregulation by RNA interference. At the molecular level we found a dramatic decline in mitotic regulator levels such as cyclin B1 and securin despite lasting spindle disruption. Additional data showed that the levels of these regulator proteins can be efficiently restored by exposure to the proteasome inhibitor MG-132 indicating that APC-dependent proteolysis is directly involved in SAC insufficiency. Thus, continuous activation of the APC triggers degradation of essential regulator proteins even in leukemic cells faced to mitotic stress such as complete spindle disruption. Such defects can lead to establishment of aneuploidy in vivo. Our findings emphasize a role of SAC insufficiency and unscheduled proteolysis in rise and progression of AML with complex karyotype.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Francisco Caiado ◽  
Diogo Maia-Silva ◽  
Carolina Jardim ◽  
Nina Schmolka ◽  
Tânia Carvalho ◽  
...  

Abstract Chemotherapy-resistant cancer recurrence is a major cause of mortality. In acute myeloid leukemia (AML), chemorefractory relapses result from the complex interplay between altered genetic, epigenetic and transcriptional states in leukemic cells. Here, we develop an experimental model system using in vitro lineage tracing coupled with exome, transcriptome and in vivo functional readouts to assess the AML population dynamics and associated molecular determinants underpinning chemoresistance development. We find that combining standard chemotherapeutic regimens with low doses of DNA methyltransferase inhibitors (DNMTi, hypomethylating drugs) prevents chemoresistant relapses. Mechanistically, DNMTi suppresses the outgrowth of a pre-determined set of chemoresistant AML clones with stemness properties, instead favoring the expansion of rarer and unfit chemosensitive clones. Importantly, we confirm the capacity of DNMTi combination to suppress stemness-dependent chemoresistance development in xenotransplantation models and primary AML patient samples. Together, these results support the potential of DNMTi combination treatment to circumvent the development of chemorefractory AML relapses.


Blood ◽  
2019 ◽  
Vol 133 (13) ◽  
pp. 1479-1488 ◽  
Author(s):  
Alexander Hallner ◽  
Elin Bernson ◽  
Brwa Ali Hussein ◽  
Frida Ewald Sander ◽  
Mats Brune ◽  
...  

Abstract Natural killer (NK) cell function is regulated by inhibitory receptors, such as the family of killer immunoglobulin-like receptors (KIRs) and the NKG2A/CD94 heterodimer. These receptors recognize cognate HLA class I molecules on potential target cells, and recent studies imply that an HLA-B dimorphism at position −21 in the gene segment encoding the leader peptide dictates whether NK cell regulation primarily relies on the KIRs or the NKG2A/CD94 receptor. The impact of this HLA-B dimorphism on NK cell–mediated destruction of leukemic cells or on the course of leukemia is largely unknown. In a first part of this study, we compared functions of NK cells in subjects carrying HLA-B −21M or 21T using interleukin-2 (IL-2)–activated NK cells and leukemic cells from patients with acute myeloid leukemia (AML). Subjects carrying HLA-B −21M harbored better-educated NKG2A+ NK cells and displayed superior capacity to degranulate lytic granules against KIR ligand-matched primary leukemic blasts. Second, we aimed to define the potential impact of HLA-B −21 variation on the course of AML in a phase 4 trial in which patients received IL-2–based immunotherapy. In keeping with the hypothesis that 21M may be associated with improved NK cell functionality, we observed superior leukemia-free survival and overall survival in −21M patients than in −21T patients during IL-2–based immunotherapy. We propose that genetic variation at HLA-B −21 may determine the antileukemic efficacy of activated NK cells and the clinical benefit of NK cell–activating immunotherapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A767-A767
Author(s):  
Yu-Lin Su ◽  
Marcin Kortylewski ◽  
Priyanka Duttagupta

BackgroundSignal transducer and activator of transcription factor 3 (STAT3) is commonly activated in acute myeloid leukemia (AML) and known for supporting cancer cell proliferation and survival. Recently, we demonstrated that STAT3 also plays a critical role ensuring AML immune evasion. Intravenous injections of bi-functional decoy oligodeoxyribonucleotides (CpG-STAT3dODN) blocked STAT3 activity and induced TLR9 signaling in Cbfb/MYH11/Mpl (CMM) AML cells, thereby resulting in immunogenic effects and T cell-mediated immune responses and leukemia regression.MethodsTo understand the molecular mechanisms of the CpG-STAT3 decoy-induced AML differentiation and immunogenicity, we performed global gene expression analysis on the in vivo treated AML cells using oligonucleotide strategy as well as an inducible STAT3 gene silencing.ResultsTranscriptional profiling revealed the upregulation of myeloid cell differentiation related genes, such as Irf8, Cebpa, and Gadd45A with reduction of oncogenic Runx1 and Run1t1 in CMM leukemic cells after CpG-STAT3dODN but not after control treatments. CpG-STAT3dODN treatment also upregulated set of antigen-presentation related genes, such as CIIta, Il12a, and Ifng in CMM AML cells. Importantly, the induction of Irf8 and Cebpa, with the concomitant suppression of Runx1 were found specifically in the subset of differentiated CD11b+ CMM cells but not in the bulk CD11b– leukemic cells. These effects were likely related to epigenetic reprogramming of AML cells as indicated by treatment-induced changes in the expression and protein levels of STAT3 regulated DNA methyltransferases, DNMT1 and DNMT3a/b. Furthermore, our initial studies suggest that STAT3 inhibition/TLR9 activation leads to immunogenic effects also in a xenotransplanted model of human FLT3-ITD MV4-11 leukemia in humanized mice. CpG-STAT3dODN alone or together with clinically-relevant demethylating agent (Decitabine) triggered differentiation of MV4-11 cells into CD11b+HLA-DR+CD86+ antigen-presenting cells (APCs) and increased ratio of CD8+ to regulatory T cells in the bone marrow, thereby reducing leukemia burden.ConclusionsOur results suggest that eliminating STAT3 permits the TLR9-driven reprogramming of AML cells into APCs to unleash T cell-mediated responses against leukemia.


2002 ◽  
Vol 20 (9) ◽  
pp. 2302-2309 ◽  
Author(s):  
Jeffrey E. Rubnitz ◽  
Susana C. Raimondi ◽  
Xin Tong ◽  
Deo Kumar Srivastava ◽  
Bassem I. Razzouk ◽  
...  

PURPOSE: To determine the impact of MLL rearrangements on the outcome of children with acute myeloid leukemia (AML). PATIENTS AND METHODS: We analyzed the clinical and biologic features of 298 infants and children with primary AML treated on four consecutive institutional clinical trials. The Kaplan-Meier method was used in survival analysis and the Cox proportional-hazards model was used to analyze the effect of potential prognostic factors on event-free survival (± 1 SE). RESULTS: Molecular studies of 152 cases detected 42 with MLL rearrangements. The karyotypes of these 42 revealed the t(9;11) (15 cases), abnormalities of chromosomes 10 and 11 (nine cases), the t(11;19) (four cases), other abnormalities of 11q23 (seven cases), and miscellaneous rearrangements (seven cases). Among these 42 patients, the 15 whose leukemic cells carried the t(9;11) had a better outcome (66% ± 15%) than the other 27 (25.9% ± 11.2%; P = .004). Cases with the t(9;11) were also characterized by M5 AML morphology (21 of 23 cases). Of the 63 patients with M5 AML, the 21 whose leukemic cells demonstrated the t(9;11) had a better outcome (71.1% ± 11%) than the other 42 (25.8% ± 7.9%; P = .0004). The only independent factors indicating a favorable prognosis were presenting leukocyte count less than 50 × 109/L (relative risk of relapse, 0.73; 95% confidence interval, 0.55 to 0.97; P = .03) and the t(9;11) (relative risk of relapse, 0.32; 95% confidence interval, 0.16 to 0.64; P = .002). CONCLUSION: We conclude that the t(9;11) is the most favorable genetic factor for patients with AML treated at our institution.


2021 ◽  
Vol 5 (1) ◽  
pp. 156-166
Author(s):  
Caroline Lo Presti ◽  
Florence Fauvelle ◽  
Marie-Christine Jacob ◽  
Julie Mondet ◽  
Pascal Mossuz

Abstract Leukemic cells display some alterations in metabolic pathways, which play a role in leukemogenesis and in patients’ prognosis. To evaluate the characteristics and the impact of this metabolic reprogramming, we explore the bone marrow samples from 54 de novo acute myeloid leukemia (AML) patients, using an untargeted metabolomics approach based on proton high-resolution magic angle spinning-nuclear magnetic resonance. The spectra obtained were subjected to multivariate statistical analysis to find specific metabolome alterations and biomarkers correlated to clinical features. We found that patients display a large diversity of metabolic profiles, according to the different AML cytologic subtypes and molecular statuses. The link between metabolism and molecular status was particularly strong for the oncometabolite 2-hydroxyglutarate (2-HG), whose intracellular production is directly linked to the presence of isocitrate dehydrogenase mutations. Moreover, patients’ prognosis was strongly impacted by several metabolites, such as 2-HG that appeared as a good prognostic biomarker in our cohort. Conversely, deregulations in phospholipid metabolism had a negative impact on prognosis through 2 main metabolites (phosphocholine and phosphoethanolamine), which could be potential aggressiveness biomarkers. Finally, we highlighted an overexpression of glutathione and alanine in chemoresistant patients. Overall, our results demonstrate that different metabolic pathways could be activated in leukemic cells according to their phenotype and maturation levels. This confirms that metabolic reprogramming strongly influences prognosis of patients and underscores a particular role of certain metabolites and associated pathways in AML prognosis, suggesting common mechanisms developed by leukemic cells to maintain their aggressiveness even after well-conducted induction chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document