scholarly journals Functional drug–target–disease network analysis of gene–phenotype connectivity for curcumin in cancer

2020 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Jiahao Tao ◽  
Zhuangzhong Chen ◽  
Suihui Li ◽  
Zeyu Liu ◽  
...  

Abstract Background The anti-tumor properties of curcumin have been elucidated in many cancer types. However, a systematic functional and biological analysis related to its target proteins has yet to be documented fully. The aim of this study was to explore the underlying mechanisms of curcumin and broaden the perspective of targeted therapies. Methods Direct protein targets (DPTs) of curcumin were searched in the DrugBank database. Using the STRING database, the interaction between curcumin and DPTs and indirect protein targets (IPTs) was documented. The protein–protein interaction (PPI) network of curcumin-mediated proteins was visualized using Cytoscape. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed for all curcumin-mediated proteins. Furthermore, the cancer targets were searched in the Comparative Toxicogenomics Database (CTD). The overlapping targets were studied using Kaplan–Meier analysis to evaluate cancer survival. Further genomic analysis of overlapping genes was conducted using the cBioPortal database. Lastly, CKK-8, qPCR, and WB analysis were used to validate the predicted results on HCC cells. Results A total of 5 DPTs and 199 IPTs were found. These protein targets were found in 121 molecular pathways analyzed via KEGG enrichment. Based on the anti-tumor properties of curcumin, two pathways were selected, including pathways in cancer (36 genes) and hepatocellular carcinoma (HCC) pathway (22 genes). Overlapping with 505 HCC-related gene sets identified in CTD, five genes (TP53、 RB1、 TGFB1、 GSTP1、 and GSTM1) were finally identified. High mRNA levels of TP53, RB1, and GSTM1 indicated a prolonged OS in HCC, while elevated mRNA levels of TGFB1 were correlated with poor prognosis. The viability of HepG2 cells and Hep3B cells can both be significantly reduced by curcumin at concentrations of 20 or 30 µM after 48 or 72 h of culture. At a concentration of 20 µM curcumin, the expression of TGFB1 and GSTP1 in Hep3B cells was reduced significantly in qPCR analysis, and reduced TGFB1 protein expression was also found in Hep3B cells. Conclusions The current results provided evidence that curcumin has the potential to become an alternative chemotherapy or chemoprevention for HCC.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Manyuan Xu ◽  
Jianxin Shi ◽  
Zhongsheng Min ◽  
Hongliu Zhu ◽  
Weiguo Sun

Background. Kang-bai-ling (KBL), a Chinese patent medicine, has been demonstrated as an effective therapy for vitiligo in China. However, the pharmacological mechanisms of KBL have not been completely elucidated. Methods. In this study, the potential multicomponent, multitarget, and multipathway mechanism of KBL against vitiligo was clarified by using network pharmacology-based strategy. In brief, potential targets of KBL were collected based on TCMSP databases, followed by network establishment concerning the interactions of potential targets of KBL with well-known therapeutic targets of vitiligo by using protein-protein interaction (PPI) data. As a result, key nodes with higher level of seven topological parameters, including “degree centrality (DC),” “betweenness centrality (BC),” “closeness centrality (CC),” “eigenvector centrality (EC),” “network centrality (NC),” and “local average connectivity (LAC)” were identified as the main targets in the network, followed by subsequent incorporation into the ClueGO for GO and KEGG signaling pathway enrichment analysis. Results. In accordance with the topological importance, a total of 23 potential targets of KBL on vitiligo were identified as main hubs. Additionally, enrichment analysis suggested that targets of KBL on vitiligo were mainly clustered into multiple biological processes (associated with DNA translation, lymphocyte differentiation and activation, steroid biosynthesis, autoimmune and systemic inflammatory reaction, neuron apoptosis, and vitamin deficiency) and related pathways (TNF, JAK-STAT, ILs, TLRs, prolactin, and NF-κB), indicating the underlying mechanisms of KBL on vitiligo. Conclusion. In this work, we successfully illuminated the “multicompounds, multitargets” therapeutic action of KBL on vitiligo by using network pharmacology. Moreover, our present outcomes might shed light on the further clinical application of KBL on vitiligo treatment.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6611 ◽  
Author(s):  
Suhong Fu ◽  
Yongqun Zhang ◽  
Jing Shi ◽  
Doudou Hao ◽  
Pengfei Zhang

Naringenin, extracted from grapefruits and citrus fruits, is a bioactive flavonoid with antioxidative, anti-inflammatory, antifibrogenic, and anticancer properties. In the past two decades, the growth of publications of naringenin in PubMed suggests that naringenin is quickly gaining interest. However, systematically regarding its biological functions connected to its direct and indirect target proteins remains difficult but necessary. Herein, we employed a set of bioinformatic platforms to integrate and dissect available published data of naringenin. Analysis based on DrugBank and the Search Tool for the Retrieval of Interacting Genes/Proteins revealed seven direct protein targets and 102 indirect protein targets. The protein–protein interaction (PPI) network of total 109 naringenin-mediated proteins was next visualized using Cytoscape. What’s more, all naringenin-mediated proteins were subject to Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis by the Database for Annotation, Visualization and Integrated Discovery, which resulted in three ESR1-related signaling pathways and prostate cancer pathway. Refined analysis of PPI network and KEGG pathway identified four genes (ESR1, PIK3CA, AKT1, and MAPK1). Further genomic analysis of four genes using cBioPortal indicated that naringenin might exert biological effects via ESR1 signaling axis. In general, this work scrutinized naringenin-relevant knowledge and provided an insight into the regulation and mediation of naringenin on prostate cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Yuan ◽  
Shenqiang Hu ◽  
Liang Li ◽  
Chunchun Han ◽  
Hehe Liu ◽  
...  

Abstract Background Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Results Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. Conclusions This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suthanthiram Backiyarani ◽  
Rajendran Sasikala ◽  
Simeon Sharmiladevi ◽  
Subbaraya Uma

AbstractBanana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein–protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)–WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Binbin Xie ◽  
Yiran Li ◽  
Rongjie Zhao ◽  
Yuzi Xu ◽  
Yuhui Wu ◽  
...  

Chemoresistance is a significant factor associated with poor outcomes of osteosarcoma patients. The present study aims to identify Chemoresistance-regulated gene signatures and microRNAs (miRNAs) in Gene Expression Omnibus (GEO) database. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) included positive regulation of transcription, DNA-templated, tryptophan metabolism, and the like. Then differentially expressed genes (DEGs) were uploaded to Search Tool for the Retrieval of Interacting Genes (STRING) to construct protein-protein interaction (PPI) networks, and 9 hub genes were screened, such as fucosyltransferase 3 (Lewis blood group) (FUT3) whose expression in chemoresistant samples was high, but with a better prognosis in osteosarcoma patients. Furthermore, the connection between DEGs and differentially expressed miRNAs (DEMs) was explored. GEO2R was utilized to screen out DEGs and DEMs. A total of 668 DEGs and 5 DEMs were extracted from GSE7437 and GSE30934 differentiating samples of poor and good chemotherapy reaction patients. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform GO and KEGG pathway enrichment analysis to identify potential pathways and functional annotations linked with osteosarcoma chemoresistance. The present study may provide a deeper understanding about regulatory genes of osteosarcoma chemoresistance and identify potential therapeutic targets for osteosarcoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guangyu Gao ◽  
Zhen Yao ◽  
Jiaofeng Shen ◽  
Yulong Liu

Dabrafenib resistance is a significant problem in melanoma, and its underlying molecular mechanism is still unclear. The purpose of this study is to research the molecular mechanism of drug resistance of dabrafenib and to explore the key genes and pathways that mediate drug resistance in melanoma. GSE117666 was downloaded from the Gene Expression Omnibus (GEO) database and 492 melanoma statistics were also downloaded from The Cancer Genome Atlas (TCGA) database. Besides, differentially expressed miRNAs (DEMs) were identified by taking advantage of the R software and GEO2R. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and FunRich was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify potential pathways and functional annotations linked with melanoma chemoresistance. 9 DEMs and 872 mRNAs were selected after filtering. Then, target genes were uploaded to Metascape to construct protein-protein interaction (PPI) network. Also, 6 hub mRNAs were screened after performing the PPI network. Furthermore, a total of 4 out of 9 miRNAs had an obvious association with the survival rate ( P < 0.05 ) and showed a good power of risk prediction model of over survival. The present research may provide a deeper understanding of regulatory genes of dabrafenib resistance in melanoma.


2020 ◽  
Author(s):  
Bolin Wu ◽  
Haitao Shang ◽  
Xitian Liang ◽  
Huajing Yang Huajing Yang ◽  
Hui Jing ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) poses a severe threat to human health. The NET-1 protein has been proved to be strongly associated with HCC proliferation and metastasis in our previous study. Methods: Here, we developed a label-free proteome mass spectrometry workflow to analyze formalin-fixed and paraffin-embedded HCC xenograft samples collected in our previous study. Results: The result showed that 78 proteins were differentially expressed after NET-1 protein inhibited. Among them, the expression of 61 proteins up-regulated and the expression of 17 proteins were significantly down-regulated. Of the differentially expressed proteins, the vast majority of Gene Ontology enrichment terms belong to the biological process. The KEGG pathway enrichment analysis showed that the 78 differentially expressed proteins significantly enriched in 45 pathways. We concluded that the function of the NET-1 gene is not only to regulate HCC but also to participate in a variety of biochemical metabolic pathways in the human body. Furthermore, the protein-protein interaction analysis indicated that the interactions of differentially expressed proteins are incredibly sophisticated. All the protein-protein interactions happened after the NET-1 gene has been silenced. Conclusions: Finally, our study also provides a useful proposal for targeted therapy based on tetraspanin proteins to treat HCC, and further mechanism investigations are needed to reveal a more detailed mechanism of action for NET-1 protein regulation of HCC.


2020 ◽  
Vol 21 (S5) ◽  
Author(s):  
Qing Xie ◽  
Kyoung Min Yang ◽  
Go Eun Heo ◽  
Min Song

Abstract Background In recent years, Traditional Chinese Medicine (TCM) and alternative medicine have been widely used along with western drugs as a complementary form of treatment. In this study, we first use the scientific literature to identify western drugs with obvious side effects. Then, we find TCM alternatives for these western drugs to ameliorate their side effects. Results We used depression as a case study. To evaluate our method, we showed the relation between herb-ingredients-target-disease for representative alternative herbs of western drugs. Further, a protein-protein interaction network of western drugs and alternative herbs was produced, and we performed enrichment analysis of the targets of the active ingredients of the herbs and examined the enrichment of Gene Ontology terms for Biological Process, Cellular Component, and Molecular Function and KEGG Pathway levels, to show how these targets affect different levels of gene expression. Conclusion Our proposed method is able to select herbs that are highly relevant to the target indication (depression) and are able to treat the side effects caused by the target drug. The compounds from our selected alternative herbal medicines can therefore be complementary to the western drugs and ameliorate their side effects, which may help in the development of new drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shengqing Hu ◽  
Yunfei Liao ◽  
Juan Zheng ◽  
Luoning Gou ◽  
Anita Regmi ◽  
...  

To better understand the molecular mechanism for the pathogenesis of follicular thyroid carcinoma (FTC), this study aimed at identifying key miRNAs and their target genes associated with FTC, as well as analyzing their interactions. Based on the gene microarray data GSE82208 and microRNA dataset GSE62054, the differentially expressed genes (DEGs) and microRNAs (DEMs) were obtained using R and SAM software. The common DEMs from R and SAM were fed to three different bioinformatic tools, TargetScan, miRDB, and miRTarBase, respectively, to predict their biological targets. With DEGs intersected with target genes of DEMs, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed through the DAVID database. Then a protein-protein interaction (PPI) network was constructed by STRING. Finally, the module analysis for PPI network was performed by MCODE and BiNGO. A total of nine DEMs were identified, and their function might work through regulating hub genes in the PPI network especially KIT and EGFR. KEGG analysis showed that intersection genes were enriched in the PI3K-Akt signaling pathway and microRNAs in cancer. In conclusion, the study of miRNA-mRNA network would offer molecular support for differential diagnosis between malignant FTC and benign FTA, providing new insights into the potential targets for follicular thyroid carcinoma diagnosis and treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Shen ◽  
Rui Yang ◽  
Jianpeng An ◽  
Xia Zhong

Prunella vulgaris (PV) has a long history of application in traditional Chinese and Western medicine as a remedy for the treatment of subacute thyroiditis (SAT). This study applied network pharmacology to elucidate the mechanism of the effects of PV against SAT. Components of the potential therapeutic targets of PV and SAT-related targets were retrieved from databases. To construct a protein-protein interaction (PPI) network, the intersection of SAT-related targets and PV-related targets was input into the STRING platform. Gene ontology (GO) analysis and KEGG pathway enrichment analysis were carried out using the DAVID database. Networks were constructed by Cytoscape for visualization. The results showed that a total of 11 compounds were identified according to the pharmacokinetic parameters of ADME. A total of 126 PV-related targets and 2207 SAT-related targets were collected, and 83 overlapping targets were subsequently obtained. The results of the KEGG pathway and compound-target-pathway (C-T-P) network analysis suggested that the anti-SAT effect of PV mainly occurs through quercetin, luteolin, kaempferol, and beta-sitosterol and is most closely associated with their regulation of inflammation and apoptosis by targeting the PIK3CG, MAPK1, MAPK14, TNF, and PTGS2 proteins and the PI3K-Akt and TNF signaling pathways. The study demonstrated that quercetin, luteolin, kaempferol, and beta-sitosterol in PV may play a major role in the treatment of SAT, which was associated with the regulation of inflammation and apoptosis, by targeting the PI3K-Akt and TNF signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document