scholarly journals Deep Neural Network Analysis of Clinical Variables Predicts Escalated Care in COVID-19 Patients

2020 ◽  
Author(s):  
Joyce Lu ◽  
Benjamin Musheyev ◽  
Qi Peng ◽  
Tim Duong

Abstract This study sought to identify the most important clinical variables that can be used to determine which COVID-19 patients will need escalated care early on using deep-learning neural networks. Analysis was performed on hospitalized COVID-19 patients between February 7, 2020 and May 4, 2020 in Stony Brook Hospital. Demographics, comorbidities, laboratory tests, vital signs, and blood gases were collected. We compared data obtained at the time in emergency department and the time of intensive care unit (ICU) upgrade of: i) COVID-19 patients admitted to the general floor (N=1203) versus those directly admitted to ICU (N=104), and ii) patients not upgraded to ICU (N=979) versus those upgraded to the ICU (N=224) from the general floor. A deep neural network algorithm was used to predict ICU admission, with 80% training and 20% testing. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis (ROC). We found that C-reactive protein, lactate dehydrogenase, creatinine, white-blood cell count, D-dimer, and lymphocyte count showed temporal divergence between patients were upgraded to ICU compared to those were not. The deep learning predictive model ranked essentially the same set of laboratory variables to be important predictors of needing ICU care. The AUC for predicting ICU admission was 0.782±0.013 for the test dataset. Adding vital sign and blood-gas data improved AUC (0.861±0.018). This study identified a few laboratory tests that were predictive of escalated care. This work could help frontline physicians to anticipate downstream ICU needs to more effectively allocate healthcare resources.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11205
Author(s):  
Joyce Q. Lu ◽  
Benjamin Musheyev ◽  
Qi Peng ◽  
Tim Q. Duong

This study sought to identify the most important clinical variables that can be used to determine which COVID-19 patients hospitalized in the general floor will need escalated care early on using neural networks (NNs). Analysis was performed on hospitalized COVID-19 patients between 7 February 2020 and 4 May 2020 in Stony Brook Hospital. Demographics, comorbidities, laboratory tests, vital signs and blood gases were collected. We compared those data obtained at the time in emergency department and the time of intensive care unit (ICU) upgrade of: (i) COVID-19 patients admitted to the general floor (N = 1203) vs. those directly admitted to ICU (N = 104), and (ii) patients not upgraded to ICU (N = 979) vs. those upgraded to the ICU (N = 224) from the general floor. A NN algorithm was used to predict ICU admission, with 80% training and 20% testing. Prediction performance used area under the curve (AUC) of the receiver operating characteristic analysis (ROC). We found that C-reactive protein, lactate dehydrogenase, creatinine, white-blood cell count, D-dimer and lymphocyte count showed temporal divergence between COVID-19 patients hospitalized in the general floor that were upgraded to ICU compared to those that were not. The NN predictive model essentially ranked the same laboratory variables to be important predictors of needing ICU care. The AUC for predicting ICU admission was 0.782 ± 0.013 for the test dataset. Adding vital sign and blood-gas data improved AUC (0.822 ± 0.018). This work could help frontline physicians to anticipate downstream ICU need to more effectively allocate healthcare resources.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 354
Author(s):  
Lu Zhang ◽  
Xinyi Qin ◽  
Min Liu ◽  
Ziwei Xu ◽  
Guangzhong Liu

As a prevalent existing post-transcriptional modification of RNA, N6-methyladenosine (m6A) plays a crucial role in various biological processes. To better radically reveal its regulatory mechanism and provide new insights for drug design, the accurate identification of m6A sites in genome-wide is vital. As the traditional experimental methods are time-consuming and cost-prohibitive, it is necessary to design a more efficient computational method to detect the m6A sites. In this study, we propose a novel cross-species computational method DNN-m6A based on the deep neural network (DNN) to identify m6A sites in multiple tissues of human, mouse and rat. Firstly, binary encoding (BE), tri-nucleotide composition (TNC), enhanced nucleic acid composition (ENAC), K-spaced nucleotide pair frequencies (KSNPFs), nucleotide chemical property (NCP), pseudo dinucleotide composition (PseDNC), position-specific nucleotide propensity (PSNP) and position-specific dinucleotide propensity (PSDP) are employed to extract RNA sequence features which are subsequently fused to construct the initial feature vector set. Secondly, we use elastic net to eliminate redundant features while building the optimal feature subset. Finally, the hyper-parameters of DNN are tuned with Bayesian hyper-parameter optimization based on the selected feature subset. The five-fold cross-validation test on training datasets show that the proposed DNN-m6A method outperformed the state-of-the-art method for predicting m6A sites, with an accuracy (ACC) of 73.58%–83.38% and an area under the curve (AUC) of 81.39%–91.04%. Furthermore, the independent datasets achieved an ACC of 72.95%–83.04% and an AUC of 80.79%–91.09%, which shows an excellent generalization ability of our proposed method.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A874-A874
Author(s):  
David Soong ◽  
David Soong ◽  
David Soong ◽  
Anantharaman Muthuswamy ◽  
Clifton Drew ◽  
...  

BackgroundRecent advances in machine learning and digital pathology have enabled a variety of applications including predicting tumor grade and genetic subtypes, quantifying the tumor microenvironment (TME), and identifying prognostic morphological features from H&E whole slide images (WSI). These supervised deep learning models require large quantities of images manually annotated with cellular- and tissue-level details by pathologists, which limits scale and generalizability across cancer types and imaging platforms. Here we propose a semi-supervised deep learning framework that automatically annotates biologically relevant image content from hundreds of solid tumor WSI with minimal pathologist intervention, thus improving quality and speed of analytical workflows aimed at deriving clinically relevant features.MethodsThe dataset consisted of >200 H&E images across >10 solid tumor types (e.g. breast, lung, colorectal, cervical, and urothelial cancers) from advanced disease patients. WSI were first partitioned into small tiles of 128μm for feature extraction using a 50-layer convolutional neural network pre-trained on the ImageNet database. Dimensionality reduction and unsupervised clustering were applied to the resultant embeddings and image clusters were identified with enriched histological and morphological characteristics. A random subset of representative tiles (<0.5% of whole slide tissue areas) from these distinct image clusters was manually reviewed by pathologists and assigned to eight histological and morphological categories: tumor, stroma/connective tissue, necrotic cells, lymphocytes, red blood cells, white blood cells, normal tissue and glass/background. This dataset allowed the development of a multi-label deep neural network to segment morphologically distinct regions and detect/quantify histopathological features in WSI.ResultsAs representative image tiles within each image cluster were morphologically similar, expert pathologists were able to assign annotations to multiple images in parallel, effectively at 150 images/hour. Five-fold cross-validation showed average prediction accuracy of 0.93 [0.8–1.0] and area under the curve of 0.90 [0.8–1.0] over the eight image categories. As an extension of this classifier framework, all whole slide H&E images were segmented and composite lymphocyte, stromal, and necrotic content per patient tumor was derived and correlated with estimates by pathologists (p<0.05).ConclusionsA novel and scalable deep learning framework for annotating and learning H&E features from a large unlabeled WSI dataset across tumor types was developed. This automated approach accurately identified distinct histomorphological features, with significantly reduced labeling time and effort required for pathologists. Further, this classifier framework was extended to annotate regions enriched in lymphocytes, stromal, and necrotic cells – important TME contexture with clinical relevance for patient prognosis and treatment decisions.


Sign in / Sign up

Export Citation Format

Share Document