Size Effect of CeO2 Particle On Nanoscale Single-Asperity Sliding Friction

Author(s):  
Ning Xu ◽  
Jiahui Ma ◽  
Qi Liu ◽  
Weizhong Han ◽  
Zhiwei Shan

Abstract The size of abrasive particle has a great impact on the fundamental friction behavior and mechanical properties of the abrasive during ultra-precision polishing performance. Here, the size effect of the tribological behavior and mechanical properties of CeO2 single abrasive were studied. Experimental results show that the size effect plays a role on coefficient of friction (COF) of each regime in single-asperity sliding friction, especially in ploughing and cutting regimes. The residual depth of the scratch and COF both decrease with the increase of the CeO2 tip radius. These results relate to the mechanical properties of CeO2 nanoparticles. We found that the effective modulus increases with the decrease of abrasive size, which corresponds to the size effect of the single-asperity sliding friction experiment.

2021 ◽  
Vol 70 (1) ◽  
Author(s):  
Ning Xu ◽  
Jiahui Ma ◽  
Qi Liu ◽  
Weizhong Han ◽  
Zhiwei Shan

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
B. Shivamurthy ◽  
Krishna Murthy ◽  
S. Anandhan

Cryogenic treated multilayered carbon fabric/oxidized multiwall carbon nanotube/epoxy (CCF/O-MWCNT/E) composite and untreated carbon fabric/epoxy (CF/E) composite were prepared by hot compression molding technique. The density and mechanical properties such as tensile properties, flexural properties, interlaminar shear strength, and microhardness of the composites were investigated as per ASTM standards. The wear and coefficient of friction behavior were investigated using computer interfaced pin-on-disc test rig at room temperature for varied load and sliding speed. The morphology of worn surfaces of the wear test composite specimens were studied by scanning electron microscope. It is found that the synergetic effect of addition of O-MWCNT to epoxy matrix and cryogenic treatment of carbon fabric improved the wear resistance and mechanical properties. Also, a thin lubricating film developed by the oxidized multiwall carbon nanotube/epoxy wear debris reduces the coefficient of sliding friction and wear rate.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2019 ◽  
Vol 50 (12) ◽  
pp. 5888-5895 ◽  
Author(s):  
Wei Zhang ◽  
Yan Du ◽  
Wangtu Huo ◽  
Jiangjiang Hu ◽  
Jinwen Lu ◽  
...  

2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2021 ◽  
Vol 901 ◽  
pp. 219-225
Author(s):  
Elena V. Torskaya ◽  
Alexey M. Mezrin

Mechanical properties of surface layers of aluminum alloys before and after friction tests are studied by nanoindentation. The influence of the composition of the alloys on these properties is analyzed. It is obtained that as a result of wear and tear, relatively compliant layer is formed on the surface of one of the alloys. Another sample demonstrates relatively rigid film at the surface of the friction path. Conclusions about different mechanisms of the wear and tear of alloys are made based on the analysis.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


Sign in / Sign up

Export Citation Format

Share Document