Experimental Validation and Numerical Simulation of Flexible and Micro-scale Roll Gap Control Technology

Author(s):  
Tingsong Yang ◽  
Qifa Chen ◽  
Yanfeng Feng ◽  
Yang Hai ◽  
Fengshan Du

Abstract To obtain a better ability of strip flatness control, this paper proposes a new flexible and micro-scale roll gap control technology. According to the principle of roll profile electromagnetic control technology (RPECT), a new electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability of this mill, a comprehensive finite element model (FEM) is established and verified, which includes a FEM for predicting the electromagnetic control roll profile and a FEM of rolling process. The simulation results show that the crown control ability of RPECT is stronger than the quadratic crown control ability, and the effect of tension on the roll gap shape crown is small. The results in the indentation experiment and the rolling experiment show that increasing the roll crown of electromagnetic control roll can adjust the strip shape form edge wave to non-wave, and middle wave. The feasibility of using RPECT to adjust the roll gap shape has been verified, and the roll gap control goal of uniform transverse size distribution can be achieved.

2021 ◽  
Author(s):  
Tingsong Yang ◽  
Jiayang Liu ◽  
Haonan Zhou ◽  
Zhiqiang Xu ◽  
Fengshan Du

Abstract Roll profile electromagnetic control technology (RPECT) is a strip flatness control technology based on the flexible control of roll profiles. As the core component, electromagnetic sticks can bulge with the induction heating of induction coils. To ensure the integrity of the coil circuit, the surfaces of the electromagnetic sticks need to be provided with slots. Moreover, the inner hole of the electromagnetic control roll is also needed to install the electromagnetic stick in the roll. The structures of the inner hole and slots affect the local structure of the electromagnetic stick and the electromagnetic control roll and then change the roll profile control ability. To research the radial bulging ability, the roundness of bulging, and the composition between the thermal crown and force crown under different holes or slots, a finite element model of circumferential RPECT is established by using the finite element software MARC. After analysis, the results showed that the radial bulging ability and the roundness under the influence of the roll radius were larger than those under the influences of the slot radius and slot amount, and the composition characteristics of the comprehensive roll profile were different under different conditions. Therefore, to achieve accurate roll profile control, the influences of the structures of holes and slots need to be included in the RPECT index.


2021 ◽  
Vol 118 (3) ◽  
pp. 305
Author(s):  
Tingsong Yang ◽  
Jiayang Liu ◽  
Xinyi Ren ◽  
Yingwei Wang ◽  
Fengshan Du

Roll profile electromagnetic control technology (RPECT) is a new strip flatness control technology. As the control element, electromagnetic sticks have a great effect on the control ability of RPECT. To improve control ability and extend service life, effective control ratio of electromagnetic stick is presented in this paper. The ratio is designed based on the structure character of electromagnetic stick, and can be used to evaluate the key parameter of electromagnetic stick. Based on the coupled FEM, the heat flux density of the roll inner hole and the temperature distribution of electromagnetic stick are analyzed for different effective control ratios; the average contact pressure between electromagnetic stick and electromagnetic control roll is studied to evaluate the change of force roll profile; the state of roll profile and the stress state of the roll are researched to analyze the comprehensive control ability. Through the verification on the roll profile electromagnetic control experimental platform, the reasonable selection range of effective control ratio, which can be used to expand the roll profile axial affected area, is from 0.5 to 0.583. In order to increase the roll crown, the selection of ηd needs to consider the current density and the optimal selection range of effective control ratio.


2021 ◽  
Vol 119 (1) ◽  
pp. 103
Author(s):  
Tingsong Yang ◽  
Yingwei Wang ◽  
Haijun Wang ◽  
Yang Hai ◽  
Fengshan Du

Roll profile electromagnetic control technology (RPECT) is a new strip flatness control technology that changes roll gap shape by controlling the roll profiles of electromagnetic control rolls (ECRs). To address the randomness of the flatness defect locations, this paper proposes an external adjustment method for RPECT roll profiles based on the segmented cooling principle. Based on the layout of the cooling areas and electromagnetic sticks, an electromagnetic-thermal-structural coupled model is established to analyse roll profile variations. The results show that symmetrically changing the cooling intensities of the different cooling areas can increase or decrease the roll crown of the ECR, while asymmetrically changing the cooling intensities of the different cooling areas can change the position of the maximum bulging point of the ECR. Variations in the component cooling ratio coefficient impact the effects of different cooling strategies, which needs to be considered when selecting the cooling strategy configuration scheme. Compared the maximum bulging values, radial temperature gradients and axial temperature gradients of different electromagnetic stick (ES) structures, the regulation law reverses when the length of the ES is too small, and the variation of the law is very small. Therefore, different ES structures have different segmented cooling regulation characteristics.


2010 ◽  
Vol 145 ◽  
pp. 210-215 ◽  
Author(s):  
Jie Wen ◽  
Qing Dong Zhang ◽  
Xiao Feng Zhang ◽  
Xue Wei Ye

According to the characteristic of high-strength strip, the roll profile configuration and change of CVC tandem cold mill are analyzed. Through the establishment of FEM model, the influences of three representative forms of roll profile configuration on high-strength strip flatness control in CVC cold rolling mill are compared, which are conventional back-up roll / CVC intermediate roll, back-up roll with CVC compensation / CVC intermediate roll, VCL+ back-up roll / HVC intermediate roll. Compared with the other two roll profile configuration, the configuration of VCL+ back-up roll / HVC intermediate roll increases 26.74% in crown adjustment domain of roll gap and 22.09% in lateral stiffness of roll gap, decreases 27.43% in contact pressure peak values between rolls. The new roll profile configuration has obtained industrial applications. Production data indicate that the control accuracy of high-strength strip is improved, also the wear of back-up roll. Significant application results have been achieved.


2018 ◽  
Vol 116 (1) ◽  
pp. 101
Author(s):  
Wenwen Liu ◽  
Yanfeng Feng ◽  
Tingsong Yang ◽  
Fengshan Du ◽  
Jingna Sun

To obtain a better strip shape control method, this paper proposes roll profile electromagnetic control technology (RPECT) based on induction heating technology and the principle of metal thermal expansion. Using the thermally driven and internal constraint mechanism of the electromagnetic stick, the technology innovatively converts the energy of induction heating into a thermodynamic hybrid power source, which achieves segmented micro-scale flexible roll profile adjustment and enhances the capacity for strip shape control. To research the technology, an electromagnetic control roll (ECR) with five control regions is built based on a ϕ560 × 2180 mm roll, and an electromagnetic-thermal-mechanical coupling model is established. Based on the model, the typical roll profile curves obtained by the ECR are researched, the strategy of increasing the growth rate of the roll crown is analysed, and the applications of RPECT in strip shape control and cold rolling are discussed. Finally, a roll profile electromagnetic control experiment platform is established to verify the model accuracy and feasibility of RPECT. The results show that RPECT can realize flexible roll profile adjustment and that the model has sufficiently high computational accuracy to research the roll profile of multi-segment RPECT.


2011 ◽  
Vol 368-373 ◽  
pp. 2711-2715 ◽  
Author(s):  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
Wei Ning Liu ◽  
Mei Yan ◽  
...  

In more and more complicated urban building environment, a new construction method that metro engineering is constructed by large-diameter shield and shallow mining method can be regarded as a great attempt in China. By taking the Gaojiayuan station of Beijing metro line 14 as an engineering background, the main construction steps for the platform of the metro station built by a large-size shield with an outer diameter of 10 m and the Pile-Beam-Arch (PBA) method are introduced. Based on the soil-structure interaction theory, a two-dimensional finite element model is used to simulate the shield tunneling and the platform construction by the PBA method to enlarge the shield tunnel. The ground deformation and structural stress of the platform are predicted. The numerical results can be regarded as a valuable reference for the application of the new construction method in Beijing metro line 14.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1209
Author(s):  
Xiang Chang ◽  
Wenzhi Fu ◽  
Mingzhe Li ◽  
Xintong Wang ◽  
Weifeng Yang ◽  
...  

Rolling technology based on arc-shaped rollers is a novel method for rapid manufacturing of 3D curved parts. The method uses a pair of arc-shaped rollers (a convex roller and a concave roller) as forming tools, forming an unevenly distributed roll gap. The sheet metal has both transverse bending and longitudinal uneven extension during rolling, so that surface parts with double curvature are processed. The curvature of the formed surface part can be changed by changing the rolling reduction. Changing the vertical distance between the rollers will cause the overall change of the roll gap height, which will inevitably have a great impact on the forming effect of formed 3D curved parts. In this paper, a finite element model and experiment with different rolling reductions was designed; the influence of rolling reduction on the bending deformation and shape accuracy of formed 3D curved parts was studied. The results show that, with the slight increase of rolling reduction (from 0.04 to 0.12 mm), the longitudinal bending deformation of the formed 3D curved part increases significantly, but its transversal bending is almost not affected. When the maximum rolling reduction is 0.04 and 0.06 mm (the corresponding minimum rolling reduction is less than or equal to zero), the shape accuracy of the formed 3D curved parts is not good enough; when the maximum rolling reduction is greater than 0.06 mm (the corresponding minimum rolling reduction is greater than zero), the shape accuracy of the formed 3D curved parts is significantly better. This indicates that, for the rolling of 3D curved parts based on arc-shaped rollers, ensuring that the minimum rolling reduction is greater than zero is the key to ensuring good shape accuracy of the formed 3D curved parts.


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


Sign in / Sign up

Export Citation Format

Share Document