scholarly journals Biallelic Mutations in WDR12 is Associated With Male Infertility With Tapered-Head Sperm

Author(s):  
juan hua ◽  
Lan Guo ◽  
Yao Yao ◽  
Yangyang Wan ◽  
Wen Hu ◽  
...  

Abstract Teratozoospermia is a rare disease associated with male infertility. Unfortunately, approximately 30% of the genetic causes associated with teratozoospermia remain unknown. Several recurrent genetic mutations have been reported to be associated with globozoospermia, macrozoospermia and acephalic spermatozoa, whereas the genetic basis of tapered-head sperm is relatively less well-understood. In this study, whole-exome sequencing (WES) identified a homozygous WD repeat domain 12 (WDR12) (p.Ser162Ala/c.484T>G) variant in an infertile patient with tapered-head sperm from a consanguineous Chinese family. Bioinformatic analysis predicted this mutation to be a pathogenic variant. To further verify the effect of this variant, we analyzed WDR12 protein expression in the patient’s spermatozoa by western blot and found WDR12 to be significantly down-regulated. Also, we found that WDR12 expression is increased in pachytene spermatocytes, and intense staining was visible throughout the round spermatids in mouse testis. Based on our results, we concluded that a rare biallelic pathogenic missense variant (p.Ser162Ala/c.484T>G) in the WDR12 gene causes teratozoospermia. These results will provide novel insights into understanding the molecular mechanisms of male infertility and will help clinicians provide accurate diagnoses.

2021 ◽  
Vol 12 ◽  
Author(s):  
Duo Yang ◽  
Haiyan Zhou ◽  
Jiwu Lin ◽  
Shuangxi Zhao ◽  
Hao Zhou ◽  
...  

The signal-induced proliferation-associated 1-like 3 (SIPA1L3) gene that encodes a putative Rap GTPase-activating protein (RapGAP) has been associated with congenital cataract and eye development abnormalities. However, our current understanding of the mutation spectrum of SIPA1L3 associated with eye defects is limited. By using whole-exome sequencing plus Sanger sequencing validation, we identified a novel heterozygous c.1871A > G (p.Lys624Arg) variation within the predicted RapGAP domain of SIPA1L3 in the proband with isolated juvenile-onset cataracts from a three-generation Chinese family. In this family, the proband's father and grandmother were also heterozygous for the c.1871A > G variation and affected by cataracts varying in morphology, severity, and age of onset. Sequence alignment shows that the Lys 624 residue of SIPA1L3 is conserved across the species. Based on the resolved structure of Rap1–Rap1GAP complex, homology modeling implies that the Lys 624 residue is structurally homologous to the Lys 194 of Rap1GAP, a highly conserved lysine residue that is involved in the interface between Rap1 and Rap1GAP and critical for the affinity to Rap·GTP. We reasoned that arginine substitution of lysine 624 might have an impact on the SIPA1L3-Rap·GTP interaction, thereby affecting the regulatory function of SIPA1L3 on Rap signaling. Collectively, our finding expands the mutation spectrum of SIPA1L3 and provides new clues to the molecular mechanisms of SIPA1L3-related cataracts. Further investigations are warranted to validate the functional alteration of the p.Lys624Arg variant of SIPA1L3.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-Xia Tang ◽  
Xiang-Shui Xiao ◽  
Kai Wang ◽  
Jie-Yuan Jin ◽  
Liang-Liang Fan ◽  
...  

Background. Cleft lip with or without cleft palate (CL/P) is the most common facial birth defect, with a worldwide incidence of 1 in 700-1000 live births. CL/P can be divided into syndromic CL/P (SCL/P) and nonsyndromic CL/P (NSCL/P). Genetic factors are an important component to the etiology of NSCL/P. ARHGAP29, one of the NSCL/P disease-causing genes, mediates the cyclical regulation of small GTP binding proteins such as RhoA and plays an essential role in cellular shape, proliferation, and craniofacial development. Methods. The present study investigated a Chinese family with NSCL/P and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatic analysis and prediction of variant pathogenicity. Cosegregation was subsequently conducted. Results. We identified a novel heterozygous missense variant of ARHGAP29 (c.2615C > T, p.A872V) in a Chinese pedigree with NSCL/P. Conclusion. We detected the disease-causing variant in this NSCL/P family. Our identification expands the genetic spectrum of ARHGAP29 and contributes to novel approaches to the genetic diagnosis and counseling of CL/P families.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiuhua Chao ◽  
Yun Xiao ◽  
Fengguo Zhang ◽  
Jianfen Luo ◽  
Ruijie Wang ◽  
...  

Aims. This study is aimed at (1) analyzing the clinical manifestations and genetic features of a novel POU3F4 mutation in a nonsyndromic X-linked recessive hearing loss family and (2) reporting the outcomes of cochlear implantation in a patient with this mutation. Methods. A patient who was diagnosed as the IP-III malformation underwent cochlear implantation in our hospital. The genetic analysis was conducted in his family, including the whole-exome sequencing combined with Sanger sequencing and bioinformatic analysis. Clinical features, preoperative auditory and speech performances, and postoperative outcomes of cochlear implant (CI) were assessed on the proband and his family. Results. A novel variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was detected in the family, which was cosegregated with the hearing loss. This variant was absent in 200 normal-hearing persons. The phylogenetic analysis and structure modeling of Pou3f4 protein further confirmed that the novel mutation was pathogenic. The proband underwent cochlear implantation on the right ear at four years old and gained greatly auditory and speech improvement. However, the benefits of the CI declined about three and a half years postoperation. Though the right ear had been reimplanted, the outcomes were still worse than before. Conclusion. A novel frame shift variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was identified in a Chinese family with X-linked inheritance hearing loss. A patient with this mutation and IP-III malformation could get good benefits from CI. However, the outcomes of the cochlear implantation might decline as the patient grows old.


2019 ◽  
Author(s):  
Bi Ning Zhang ◽  
Tommy Chung Yan Chan ◽  
Pancy Oi Sin Tam ◽  
Yu Liu ◽  
Chi Pui Pang ◽  
...  

AbstractBackgroundSclerocomea is a rare congenital disorder characterized with cornea opacification. We identified a heterozygous missense RAD21 variant in a non-cons anguineous Chinese family with multiple peripheral sclerocomea patients spanning across three generations inherited in an autosomal dominant manner.MethodsComprehensive ophthalmic examinations were conducted on all 14 members. Whole exome sequencing was used to identify the genetic alterations in the affected pedigree members. Lymphoblastoid cell lines (LCLs) were established using blood samples from all members. Cleavage of RAD21 protein was quantified in these cell lines.ResultsAll affected individuals showed features of scleralization over the peripheral cornea of both eyes. Mean horizontal and vertical corneal diameter were significantly decreased in the affected members. Significant differences were also observed on mean apex pachymetry between affected and unaffected subjects. A RAD21C1348T variant was co-segregated with affected members. Both the wild-type allele and the missense variant were expressed at the mRNA level. This variant caused RAD21 R450C substitution at the separase cleavage site, which led to reduced RAD21 cleavage.ConclusionWe believe this is the first report of genetic variant in sclerocornea without other syndromes. Further work is needed to confirm the RAD21R450C variant with sclerocomea.


2021 ◽  
Author(s):  
Jie Li ◽  
Tianliu Peng ◽  
Le Wang ◽  
Panpan Long ◽  
Ruping Quan ◽  
...  

Abstract Background Premature Ovarian Insufficiency plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. Results The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. Conclusion This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2.


Author(s):  
Amjad Khan ◽  
Xiao Bai ◽  
Muhammad Umair ◽  
Shirui Han ◽  
Xiaerbati Habulieti ◽  
...  

Retinitis pigmentosa (RP) clinically and genetically heterogeneous group of inherited retinal disorders (IRD) that result in retinal degeneration. This study aimed to identify the genetic findings of patients with autosomal recessive retinitis pigmentosa (arRP). Whole exome sequencing (WES) was performed in two unrelated Pakistani families underlying arRP. Data analysis and mutation screening was performed for all the known RP genes following bi-directional Sanger sequencing to determine whether any of the candidate variants co-segregated with the disease phenotype in the families. WES data analysis revealed a novel homozygous missense variant (c.1274T>C) in the in Tubby like Protein 1 (TULP1 NM_003322.6) gene in family 1 and a novel homozygous frameshift variant (c.351delC) in the retinoid isomerohydrolase 65 (RPE65 NM_000329.3) gene in family 2. The identified variants perfectly co-segregated with the disease phenotype within the families. Our results strongly suggest that mutations in TULP1 and RPE65 are responsible for the retinal phenotype in the affected individuals. These mutations will increase the mutation spectrum of these genes; furthermore, it will enhance our knowledge and understanding of the underlying molecular mechanisms of retinitis pigmentosa.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Hao Geng ◽  
Dongdong Tang ◽  
Chuan Xu ◽  
Xiaojin He ◽  
Zhiguo Zhang

Background. Split-hand/foot malformation (SHFM) is a severe congenital disability mainly characterized by the absence or hypoplasia of the central ray of the hand/foot. To date, several candidate genes associated with SHFM have been identified, including TP63, DLX5, DLX6, FGFR1, and WNT10B. Herein, we report a novel variant of TP63 heterozygously present in affected members of a family with SHFM. Methods. This study investigated a Chinese family, in which the proband and his son suffered from SHFM. The peripheral blood sample of the proband was used to perform whole-exome sequencing (WES) to explore the possible genetic causes of this disease. Postsequencing bioinformatic analyses and Sanger sequencing were conducted to verify the identified variants and parental origins on all family members in the pedigree. Results. By postsequencing bioinformatic analyses and Sanger sequencing, we identified a novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in this family that results in a substitution of methionine with isoleucine, which is probably associated with the occurrence of SHFM. Conclusion. A novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in SHFM was thus identified, which may enlarge the spectrum of known TP63 variants and also provide new approaches for genetic counselling of families with SHFM.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Shaoyi Mei ◽  
Yi Wu ◽  
Yan Wang ◽  
Yubo Cui ◽  
Miao Zhang ◽  
...  

Congenital cataract, an ocular disease predominantly occurring within the first decade of life, is one of the leading causes of blindness in children. However, the molecular mechanisms underlying the pathogenesis of congenital cataract remain incompletely defined. Through whole-exome sequencing of a Chinese family with congenital cataract, we identified a potential pathological variant (p.G1943E) in PIKFYVE, which is located in the PIP kinase domain of the PIKFYVE protein. We demonstrated that heterozygous/homozygous disruption of PIKFYVE kinase domain, instead of overexpression of PIKFYVEG1943E in zebrafish mimicked the cataract defect in human patients, suggesting that haploinsufficiency, rather than dominant-negative inhibition of PIKFYVE activity caused the disease. Phenotypical analysis of pikfyve zebrafish mutants revealed that loss of Pikfyve caused aberrant vacuolation (accumulation of Rab7+Lc3+ amphisomes) in lens cells, which was significantly alleviated by treatment with the V-ATPase inhibitor bafilomycin A1 (Baf-A1). Collectively, we identified PIKFYVE as a novel causative gene for congenital cataract and pinpointed the potential application of Baf-A1 for the treatment of congenital cataract caused by PIKFYVE deficiency.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shuai Lu ◽  
Yayun Gu ◽  
Yifei Wu ◽  
Shenmin Yang ◽  
Chenmeijie Li ◽  
...  

AbstractInner dynein arm (IDA), composed of a series of protein complex, is necessary to cilia and flagella bend formation and beating. Previous studies indicated that defects of IDA protein complex result in multiple morphological abnormalities of the sperm flagellum (MMAF) and male infertility. However, the genetic causes and molecular mechanisms in the IDAs need further exploration. Here we identified two loss-of-function variants of WDR63 in both MMAF and non-obstructive azoospermia (NOA) affected cohorts. WDR63 encodes an IDA-associated protein that is dominantly expressed in testis. We next generated Wdr63-knockout (Wdr63-KO) mice through the CRISPR-Cas9 technology. Remarkably, Wdr63-KO induced decreased sperm number, abnormal flagellar morphology and male infertility. In addition, transmission electron microscopy assay showed severely disorganized “9 + 2” axoneme and absent inner dynein arms in the spermatozoa from Wdr63-KO male mice. Mechanistically, we found that WDR63 interacted with WDR78 mainly via WD40-repeat domain and is necessary for IDA assembly. Furthermore, WDR63-associated male infertility in human and mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. In conclusion, the present study demonstrates that bi-allelic variants of WDR63 cause male infertility via abnormal inner dynein arms assembly and flagella formation and can be used as a genetic diagnostic indicator for infertility males.


2019 ◽  
Author(s):  
Margot J. Wyrwoll ◽  
Şehime G. Temel ◽  
Liina Nagirnaja ◽  
Manon S. Oud ◽  
Alexandra M. Lopes ◽  
...  

AbstractMale infertility affects ∼7% of men in Western societies, but its causes remain poorly understood. The most clinically severe form of male infertility is non-obstructive azoospermia (NOA), which is, in part, caused by an arrest at meiosis, but so far only few genes have been reported to cause germ cell arrest in males. To address this gap, whole exome sequencing was performed in 60 German men with complete meiotic arrest, and we identified in three unrelated men the same homozygous frameshift variant c.676dup (p.Trp226LeufsTer4) in M1AP, encoding meiosis 1 arresting protein. Then, with collaborators from the International Male Infertility Genomics Consortium (IMIGC), we screened a Dutch cohort comprising 99 infertile men and detected the same homozygous variant c.676dup in a man with hypospermatogenesis predominantly displaying meiotic arrest. We also identified two Portuguese men with NOA carrying likely biallelic loss-of-function (LoF) and missense variants in M1AP among men screened by the Genetics of Male Infertility Initiative (GEMINI). Moreover, we discovered a homozygous missense variant p.(Pro389Leu) in M1AP in a consanguineous Turkish family comprising five infertile men. M1AP is predominantly expressed in human and mouse spermatogonia up to secondary spermatocytes and previous studies have shown that knockout male mice are infertile due to meiotic arrest. Collectively, these findings demonstrate that both LoF and missense M1AP variants that impair its protein cause autosomal-recessive meiotic arrest, non-obstructive azoospermia and male infertility. In view of the evidence from several independent groups and populations, M1AP should be included in the growing list of validated NOA genes.


Sign in / Sign up

Export Citation Format

Share Document