scholarly journals Heterozygous missense RAD21 variant in a peripheral sclerocornea pedigree

2019 ◽  
Author(s):  
Bi Ning Zhang ◽  
Tommy Chung Yan Chan ◽  
Pancy Oi Sin Tam ◽  
Yu Liu ◽  
Chi Pui Pang ◽  
...  

AbstractBackgroundSclerocomea is a rare congenital disorder characterized with cornea opacification. We identified a heterozygous missense RAD21 variant in a non-cons anguineous Chinese family with multiple peripheral sclerocomea patients spanning across three generations inherited in an autosomal dominant manner.MethodsComprehensive ophthalmic examinations were conducted on all 14 members. Whole exome sequencing was used to identify the genetic alterations in the affected pedigree members. Lymphoblastoid cell lines (LCLs) were established using blood samples from all members. Cleavage of RAD21 protein was quantified in these cell lines.ResultsAll affected individuals showed features of scleralization over the peripheral cornea of both eyes. Mean horizontal and vertical corneal diameter were significantly decreased in the affected members. Significant differences were also observed on mean apex pachymetry between affected and unaffected subjects. A RAD21C1348T variant was co-segregated with affected members. Both the wild-type allele and the missense variant were expressed at the mRNA level. This variant caused RAD21 R450C substitution at the separase cleavage site, which led to reduced RAD21 cleavage.ConclusionWe believe this is the first report of genetic variant in sclerocornea without other syndromes. Further work is needed to confirm the RAD21R450C variant with sclerocomea.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Bi Ning Zhang ◽  
Tommy Chung Yan Chan ◽  
Pancy Oi Sin Tam ◽  
Yu Liu ◽  
Chi Pui Pang ◽  
...  

Background. Sclerocornea is a rare congenital disorder characterized with the opacification of the cornea. Here, we report a nonconsanguineous Chinese family with multiple peripheral sclerocornea patients spanning across three generations inherited in an autosomal dominant manner. Methods. This is a retrospective case series of a peripheral sclerocornea pedigree. Comprehensive ophthalmic examinations were conducted and assessed on 14 pedigree members. Whole-exome sequencing was used to identify the genetic alterations in the affected pedigree members. Lymphoblastoid cell lines (LCLs) were established using blood samples from the family members. Functional tests were performed with these cell lines. Results. Six affected and eight unaffected members of a family with peripheral sclerocornea were examined. All affected individuals showed features of scleralization over the peripheral cornea of both eyes. Mean horizontal and vertical corneal diameter were found significantly decreased in the affected members. Significant differences were also observed on the mean apex pachymetry between affected and unaffected subjects. These ophthalmic parameters did not resemble that of cornea plana. A RAD21C1348T variant was identified by whole-exome sequencing. Although this variant causes RAD21 R450C substitution at the separase cleavage site, cells from peripheral sclerocornea family members had no mitosis and ploidy defects. Conclusion. We report a family of peripheral sclerocornea with no association with cornea plana. A RAD21 variant was found cosegregating with peripheral sclerocornea. Our results suggest that RAD21 functions, other than its cell cycle and chromosome segregation regulations, could underline the pathogenesis of peripheral sclerocornea.


2017 ◽  
Vol 176 (5) ◽  
pp. K9-K14 ◽  
Author(s):  
Sandrine Caburet ◽  
Ronit Beck Fruchter ◽  
Bérangère Legois ◽  
Marc Fellous ◽  
Stavit Shalev ◽  
...  

Context PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. Objective As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. Methods Whole-exome sequencing and Sanger sequencing confirmation. Results Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. Conclusions This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo–pituitary axis may play role in the pathogenesis of PCOS.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 611-611 ◽  
Author(s):  
Teresa Ezponda ◽  
Relja Popovic ◽  
Yupeng Zheng ◽  
Behnam Nabet ◽  
Christine Will ◽  
...  

Abstract Genetic alterations of epigenetic regulators have become a recurrent theme in hematological malignancies. In particular, aberrations that alter the levels or distribution of methylation of lysine 27 on histone H3 (H3K27me) have emerged as a common feature of a wide variety of cancers, including multiple myeloma (MM). The histone demethylase UTX/KDM6A activates gene expression by removing the H3K27me3 repressive histone mark, counteracting the activity of EZH2, the enzyme that places this modification. UTX somatic inactivating mutations and deletions are found in up to 10% of MM cases; nevertheless, the epigenetic impact of UTX loss in MM and the mechanisms by which it contributes to this disease remain to be elucidated. To ascertain the biological impact of UTX loss, we used a recently identified isogenic cell line pair: ARP-1 (UTX wild-type) and ARD (UTX null). UTX-null ARD cells were engineered to express UTX in a doxycycline-inducible manner. UTX add-back slowed the proliferation rate of ARD cells, without affecting their viability. Soft agar assays demonstrated that UTX-null ARD cells have increased clonogenicity compared to UTX-wild-type ARP-1 cells. Re-expression of UTX partially reversed this effect, decreasing the number and size of colonies formed. ARD cells also showed increased adhesion to Hs-5 bone marrow stromal cells and to fibronectin than ARP-1 cells, an ability associated with cell survival and drug resistance. UTX add-back decreased the adhesive properties of ARD cells demonstrating this effect is dependent on UTX loss. Mass spectrometry analysis of the add-back system and a panel of UTX wild-type and mutant MM cell lines showed that global levels of H3K27me are not altered after UTX loss or upon its add-back. Therefore, UTX depletion may alter H3K27me at specific loci, and control the expression of a limited number of genes. To identify the genes and pathways that are altered upon UTX loss, we performed RNA-sequencing (RNA-seq) on the paired MM cell lines and the add-back system. This analysis revealed approximately 5,000 genes differentially expressed between ARP-1 and ARD cells. Re-expression of UTX in the UTX-null ARD cells reversed the expression of approximately 1,400 genes, most of them being upregulated upon reintroduction of UTX. Gene ontology analysis of genes responsive to UTX manipulation identified pathways such as JAK-STAT, cadherin, integrin and Wnt pathways. Many of these pathways are related to cell adhesion properties, correlating with the effects observed in vitro. Some examples of the genes which expression was restored upon UTX add-back are E-cadherin, whose loss has been associated with MM progression; and PTPN6, a negative regulator of the JAK-STAT pathway. Chromatin immunoprecipitation (ChIP) experiments at UTX target genes revealed a decrease in H3K27me3 and a concomitant increase in H3K4me3 upon UTX add-back, correlating with the observed changes in gene expression. As loss of UTX leads to a failure in the removal of H3K27me3, we hypothesized that UTX-null cells may be more dependent on EZH2 to maintain high H3K27me3 levels at specific loci. Treatment of the paired cell lines with the EZH2 inhibitor GSK343 for 7 days significantly decreased the viability of UTX-null ARD cells, but had no effect on the UTX wild-type ARP-1 cells. This effect was not exclusive to these cell lines, as treatment of a panel of UTX wild-type and mutant MM cells corroborated the increased sensitivity in UTX-mutant cells. RNA-seq of ARD cells treated with GSK343 for 7 days identified approximately 2,000 genes with altered expression in response to this drug, most of them being upregulated upon EZH2 inhibition. These genes partially overlapped with the genes that were responsive to UTX add-back, including E-cadherin, suggesting that treatment with EZH2 inhibitors is somewhat similar to UTX add-back. Collectively, this work demonstrates that loss of UTX alters the epigenetic landscape of MM cells, leading to altered expression of a specific set of genes, ultimately benefiting cells through increased proliferation, clonogenicity and adhesion. Moreover, inhibition of EZH2 partially reverses aberrations promoted by UTX loss and may represent a rationale therapy for the treatment of this type of MM. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jie Li ◽  
Tianliu Peng ◽  
Le Wang ◽  
Panpan Long ◽  
Ruping Quan ◽  
...  

Abstract Background Premature Ovarian Insufficiency plagues 1% of women under 40, while quite a few remain an unknown cause. The development of sequencing has helped find pathogenic genes and reveal the relationship between DNA repair and ovarian reserve. Through the exome sequencing, our study targets screening out the possible POI pathogenic gene and variants in a Chinese family and 20 sporadic POI patients, preliminarily exploring the functional impact and finding out potential linkages between the gene and POI. Results The whole exome sequencing suggested a novel FMN2 heterozygous variant c.1949C > T (p.Ser650Leu) carried by all three patients in a Chinese family and another c.1967G > A(p.Arg656His) variant in a sporadic case. Since no FMN2 missense mutation is reported for causing human POI, we preliminarily assessed p.Ser650Leu variant via cross-species alignment and 3D modeling and found it possibly deleterious. A series of functional evidence was consistent with our hypothesis. We proved the expression of FMN2 in different stages of oocytes and observed a statistical difference of chromosomal breakages between the POI patient carrying p.Arg656His variant and the health control (p = 0.0013). Western Blot also suggested a decrease in FMN2 and P21 in the mutant type and an associated increase in H2AX. The p.Arg656His variant with an extremely low frequency also indicated that the gene FMN2 might play an essential role in the genetic etiology of POI. To the best of our knowledge, this is the first POI report on missense variants of FMN2. Conclusion This finding indicates a novel gene possibly related to POI and sheds lights on the study of FMN2.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Hao Geng ◽  
Dongdong Tang ◽  
Chuan Xu ◽  
Xiaojin He ◽  
Zhiguo Zhang

Background. Split-hand/foot malformation (SHFM) is a severe congenital disability mainly characterized by the absence or hypoplasia of the central ray of the hand/foot. To date, several candidate genes associated with SHFM have been identified, including TP63, DLX5, DLX6, FGFR1, and WNT10B. Herein, we report a novel variant of TP63 heterozygously present in affected members of a family with SHFM. Methods. This study investigated a Chinese family, in which the proband and his son suffered from SHFM. The peripheral blood sample of the proband was used to perform whole-exome sequencing (WES) to explore the possible genetic causes of this disease. Postsequencing bioinformatic analyses and Sanger sequencing were conducted to verify the identified variants and parental origins on all family members in the pedigree. Results. By postsequencing bioinformatic analyses and Sanger sequencing, we identified a novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in this family that results in a substitution of methionine with isoleucine, which is probably associated with the occurrence of SHFM. Conclusion. A novel missense variant (NM_003722.4:c.948G>A; p.Met316Ile) of TP63 in SHFM was thus identified, which may enlarge the spectrum of known TP63 variants and also provide new approaches for genetic counselling of families with SHFM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 782-782
Author(s):  
Ayana Kon ◽  
Lee-Yung Shih ◽  
Masashi Minamino ◽  
Masashi Sanada ◽  
Yuichi Shiraishi ◽  
...  

Abstract Abstract 782 Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in both acute and chronic myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. In the previous study, we analyzed 29 paired tumor-normal samples with chronic myeloid neoplasms with myelodysplastic features using whole exome sequencing (Yoshida et al., Nature 2011). Although the major discovery was frequent spliceosome mutations tightly associated with myelodysplasia phenotypes, hundreds of unreported gene mutations were also identified, among which we identified recurrent mutations involving STAG2, a core cohesin component, and also two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex conserved across species and is composed of four core subunits, i.e., SMC1, SMC3, RAD21 and STAG proteins, together with several regulatory proteins. Forming a ring-like structure, cohesin is engaged in cohesion of sister chromatids in mitosis, post-replicative DNA repair and regulation of gene expression. To investigate a possible role of cohesin mutations in myeloid leukemogenesis, an additional 534 primary specimens of various myeloid neoplasms was examined for mutations in a total of 9 components of the cohesin and related complexes, using high-throughput sequencing. Copy number alterations in cohesin loci were also interrogated by SNP arrays. In total, 58 mutations and 19 deletions were confirmed by Sanger sequencing in 73 out of 563 primary myeloid neoplasms (13%). Mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205) and CML (8/65), with much lower mutation frequencies in MPN (2/76), largely in a mutually exclusive manner. In MDS, mutations were more frequent in RCMD and RAEB (19.5%) but rare in RA, RARS, RCMD-RS and 5q- syndrome (3.4%). Cohesin mutations were significantly associated with poor prognosis in CMML, but not in MDS cases. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles was performed in 19 cases with cohesin mutations. Majority of the cohesin mutations (16/19) existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we investigated a possible impact of mutations on cohesin functions, where 17 myeloid leukemia cell lines with or without cohesin mutations were examined for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of one or more components of cohesin was substantially reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we examined the effect of forced expression of wild-type cohesin on cell proliferation of cohesin-defective cells. Introduction of the wild-type RAD21 and STAG2 suppressed the cell growth of RAD21- (Kasumi-1 and MOLM13) and STAG2-defective (MOLM13) cell lines, respectively, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, 23 cohesin-mutated cases of our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Alternatively, a growing body of evidence suggests that cohesin regulate gene expression, arguing for the possibility that cohesin mutations might participate in leukemogenesis through deregulated gene expression. Of additional note, the number of non-silent mutations determined by our whole exome analysis was significantly higher in 6 cohesin-mutated cases compared to non-mutated cases. Since cohesin also participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, we report a new class of common genetic targets in myeloid malignancies, the cohesin complex. Our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


2019 ◽  
Vol 28 (8) ◽  
pp. 1357-1368 ◽  
Author(s):  
Alessandra Mancini ◽  
Sasha R Howard ◽  
Claudia P Cabrera ◽  
Michael R Barnes ◽  
Alessia David ◽  
...  

Abstract The initiation of puberty is orchestrated by an augmentation of gonadotropin-releasing hormone (GnRH) secretion from a few thousand hypothalamic neurons. Recent findings have indicated that the neuroendocrine control of puberty may be regulated by a hierarchically organized network of transcriptional factors acting upstream of GnRH. These include enhanced at puberty 1 (EAP1), which contributes to the initiation of female puberty through transactivation of the GnRH promoter. However, no EAP1 mutations have been found in humans with disorders of pubertal timing. We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited delayed puberty (DP). Variants were analyzed for rare, potentially pathogenic variants enriched in case versus controls and relevant to the biological control of puberty. We identified one in-frame deletion (Ala221del) and one rare missense variant (Asn770His) in EAP1 in two unrelated families; these variants were highly conserved and potentially pathogenic. Expression studies revealed Eap1 mRNA abundance in peri-pubertal mouse hypothalamus. EAP1 binding to the GnRH1 promoter increased in monkey hypothalamus at the onset of puberty as determined by chromatin immunoprecipitation. Using a luciferase reporter assay, EAP1 mutants showed a reduced ability to trans-activate the GnRH promoter compared to wild-type EAP1, due to reduced protein levels caused by the Ala221del mutation and subcellular mislocation caused by the Asn770His mutation, as revealed by western blot and immunofluorescence, respectively. In conclusion, we have identified the first EAP1 mutations leading to reduced GnRH transcriptional activity resulting in a phenotype of self-limited DP.


2020 ◽  
Author(s):  
Xianyu Qin ◽  
Ping Li ◽  
Hui-Qi Qu ◽  
Yichuan Liu ◽  
Yu Xia ◽  
...  

Abstract Background Mutations in the sarcomeric protein filamin C (FLNC) gene have been linked to hypertrophic cardiomyopathy (HCM), in which they increase the risk of ventricular arrhythmia and sudden death. In this study, we identified a novel missense mutation of FLNC in a Chinese family with HCM and interestingly a second novel truncating mutation of MYLK2 in one family member with different phenotype. Methods We performed whole-exome sequencing in a Chinese family with HCM of unknown cause. To validate the function of a novel mutation of FLNC, we introduced the mutant and wild-type gene into AC16 cells (human cardiomyocytes), and used western blotting to analyze the expression of FLNC in subcellular fractions, and confocal microscope to observe the subcellular distribution of the protein. Results We identified a novel missense single nucleotide variant (FLNC c.G5935A [p.A1979T]) in the family, which segregates with the disease. FLNC expression levels were equivalent in both wild type and p.A1979T cardiomyocytes. However, expression of the mutant protein resulted in cytoplasmic protein aggregations, in contrast to wild type FLNC, which was distributed in the cytoplasm and did not form aggregates. Unexpectely, a second truncating mutation, NM_033118:exon8:c.G1138T:p.E380X of the MYLK2 gene, was identified in the mother of the proband with dilated cardiomyopathy, but absent in other subjects. Conclusion We identified the FLNC A1979T mutation as a novel pathogenic variant associated with HCM in a Chinese family, as well as a second causal mutation in a family member with a distinct phenotype. The possibility of more than one causal mutations in cardiomyopathy warrants clinical attention, especially for patients with atypical clinical features.


2020 ◽  
Author(s):  
Xianyu Qin ◽  
Ping Li ◽  
Huiqi Qu ◽  
Yichuan Liu ◽  
Yu Xia ◽  
...  

Background: Mutations in the sarcomeric protein filamin C (FLNC) gene have been linked to hypertrophic cardiomyopathy (HCM), in which they increase the risk of ventricular arrhythmia and sudden death. In this study, we identified a novel missense mutation of FLNC in a Chinese family with HCM and interestingly a second novel truncating mutation of MYLK2 in one family member with different phenotype. Methods: We performed whole-exome sequencing in a Chinese family with HCM of unknown cause. To validate the function of a novel mutation of FLNC, we introduced the mutant and wild-type gene into AC16 cells (human cardiomyocytes), and used western blotting to analyze the expression of FLNC in subcellular fractions, and confocal microscope to observe the subcellular distribution of the protein. Results: We identified a novel missense single nucleotide variant (FLNC c.G5935A [p.A1979T]) in the family, which segregates with the disease. FLNC expression levels were equivalent in both wild type and p.A1979T cardiomyocytes. However, expression of the mutant protein resulted in cytoplasmic protein aggregations, in contrast to wild type FLNC, which was distributed in the cytoplasm and did not form aggregates. Unexpectely, a second truncating mutation, NM_033118:exon8:c.G1138T:p.E380X of the MYLK2 gene, was identified in the mother of the proband with dilated cardiomyopathy, but absent in other subjects. Conclusion: We identified the FLNC A1979T mutation as a novel pathogenic variant associated with HCM in a Chinese family, as well as a second causal mutation in a family member with a distinct phenotype. The possibility of more than one causal mutations in cardiomyopathy warrants clinical attention, especially for patients with atypical clinical features.


2021 ◽  
Author(s):  
juan hua ◽  
Lan Guo ◽  
Yao Yao ◽  
Yangyang Wan ◽  
Wen Hu ◽  
...  

Abstract Teratozoospermia is a rare disease associated with male infertility. Unfortunately, approximately 30% of the genetic causes associated with teratozoospermia remain unknown. Several recurrent genetic mutations have been reported to be associated with globozoospermia, macrozoospermia and acephalic spermatozoa, whereas the genetic basis of tapered-head sperm is relatively less well-understood. In this study, whole-exome sequencing (WES) identified a homozygous WD repeat domain 12 (WDR12) (p.Ser162Ala/c.484T>G) variant in an infertile patient with tapered-head sperm from a consanguineous Chinese family. Bioinformatic analysis predicted this mutation to be a pathogenic variant. To further verify the effect of this variant, we analyzed WDR12 protein expression in the patient’s spermatozoa by western blot and found WDR12 to be significantly down-regulated. Also, we found that WDR12 expression is increased in pachytene spermatocytes, and intense staining was visible throughout the round spermatids in mouse testis. Based on our results, we concluded that a rare biallelic pathogenic missense variant (p.Ser162Ala/c.484T>G) in the WDR12 gene causes teratozoospermia. These results will provide novel insights into understanding the molecular mechanisms of male infertility and will help clinicians provide accurate diagnoses.


Sign in / Sign up

Export Citation Format

Share Document