scholarly journals Bi-allelic variants in human WDR63 cause male infertility via abnormal inner dynein arms assembly

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shuai Lu ◽  
Yayun Gu ◽  
Yifei Wu ◽  
Shenmin Yang ◽  
Chenmeijie Li ◽  
...  

AbstractInner dynein arm (IDA), composed of a series of protein complex, is necessary to cilia and flagella bend formation and beating. Previous studies indicated that defects of IDA protein complex result in multiple morphological abnormalities of the sperm flagellum (MMAF) and male infertility. However, the genetic causes and molecular mechanisms in the IDAs need further exploration. Here we identified two loss-of-function variants of WDR63 in both MMAF and non-obstructive azoospermia (NOA) affected cohorts. WDR63 encodes an IDA-associated protein that is dominantly expressed in testis. We next generated Wdr63-knockout (Wdr63-KO) mice through the CRISPR-Cas9 technology. Remarkably, Wdr63-KO induced decreased sperm number, abnormal flagellar morphology and male infertility. In addition, transmission electron microscopy assay showed severely disorganized “9 + 2” axoneme and absent inner dynein arms in the spermatozoa from Wdr63-KO male mice. Mechanistically, we found that WDR63 interacted with WDR78 mainly via WD40-repeat domain and is necessary for IDA assembly. Furthermore, WDR63-associated male infertility in human and mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. In conclusion, the present study demonstrates that bi-allelic variants of WDR63 cause male infertility via abnormal inner dynein arms assembly and flagella formation and can be used as a genetic diagnostic indicator for infertility males.

2017 ◽  
Author(s):  
Inga M. Höben ◽  
Rim Hjeij ◽  
Heike Olbrich ◽  
Gerard W. Dougherty ◽  
Tabea Menchen ◽  
...  

AbstractPrimary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility and randomization of the left/right body axis caused by defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open reading frame C11ORF70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11ORF70 cause immotility of respiratory cilia and sperm flagella, respectively, due to loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11ORF70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11ORF70 showed that C11ORF70 is expressed in ciliated respiratory cells and that the expression of C11ORF70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein arm assembly factors. Furthermore, C11ORF70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11ORF70 is a novel preassembly factor involved in the pathogenesis of PCD. The identification of a novel genetic defect that causes PCD and male infertility is of great clinical importance as well as for genetic counselling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yeting Hong ◽  
Yanqian Wu ◽  
Jianbin Zhang ◽  
Chong Yu ◽  
Lu Shen ◽  
...  

Currently, the molecular mechanisms underlining male infertility are still poorly understood. Our previous study has demonstrated that PIWI-interacting RNAs (piRNAs) are downregulated in seminal plasma of infertile patients and can serve as molecular biomarkers for male infertility. However, the source and mechanism for the dysregulation of piRNAs remain obscure. In this study, we found that exosomes are present in high concentrations in human seminal plasma and confirmed that piRNAs are predominantly present in the exosomal fraction of seminal plasma. Moreover, we showed that piRNAs were significantly decreased in exosomes of asthenozoospermia patients compared with normozoospermic men. By systematically screening piRNA profiles in sperms of normozoospermic men and asthenozoospermia patients, we found that piRNAs were parallelly reduced during infertility. At last, we investigated the expression of some proteins that are essential for piRNAs biogenesis in sperms and therefore identified a tight correlation between the levels of spermatozoa piRNA and MitoPLD protein, suggesting that the loss-of-function of MitoPLD could cause a severe defect of piRNA accumulation in sperms. In summary, this study identified a parallel reduction of piRNAs and MitoPLD protein in sperms of asthenozoospermia patients, which may provide pathophysiological clues about sperm motility.


2021 ◽  
Author(s):  
juan hua ◽  
Lan Guo ◽  
Yao Yao ◽  
Yangyang Wan ◽  
Wen Hu ◽  
...  

Abstract Teratozoospermia is a rare disease associated with male infertility. Unfortunately, approximately 30% of the genetic causes associated with teratozoospermia remain unknown. Several recurrent genetic mutations have been reported to be associated with globozoospermia, macrozoospermia and acephalic spermatozoa, whereas the genetic basis of tapered-head sperm is relatively less well-understood. In this study, whole-exome sequencing (WES) identified a homozygous WD repeat domain 12 (WDR12) (p.Ser162Ala/c.484T>G) variant in an infertile patient with tapered-head sperm from a consanguineous Chinese family. Bioinformatic analysis predicted this mutation to be a pathogenic variant. To further verify the effect of this variant, we analyzed WDR12 protein expression in the patient’s spermatozoa by western blot and found WDR12 to be significantly down-regulated. Also, we found that WDR12 expression is increased in pachytene spermatocytes, and intense staining was visible throughout the round spermatids in mouse testis. Based on our results, we concluded that a rare biallelic pathogenic missense variant (p.Ser162Ala/c.484T>G) in the WDR12 gene causes teratozoospermia. These results will provide novel insights into understanding the molecular mechanisms of male infertility and will help clinicians provide accurate diagnoses.


2018 ◽  
Vol 56 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Xiaojin He ◽  
Weiyu Li ◽  
Huan Wu ◽  
Mingrong Lv ◽  
Wangjie Liu ◽  
...  

BackgroundMale infertility is a major issue of human reproduction health. Asthenoteratospermia can impair sperm motility and cause male infertility. Asthenoteratospermia with multiple morphological abnormalities of the flagella (MMAF) presents abnormal spermatozoa with absent, bent, coiled, short and/or irregular-calibre flagella. Previous studies on MMAF reported that genetic defects in cilia-related genes (eg, AKAP4, DNAH1, CFAP43, CFAP44 and CFAP69) are the major cause of MMAF. However, the known MMAF-associated genes are only responsible for approximately 30% to 50% of human cases. We further investigated the cases with MMAF in search of additional genes mutated in this condition.Methods and resultsWe conducted whole exome sequencing in a male individual with MMAF from a consanguineous Han Chinese family. Sanger sequencing was also conducted in additional individuals with MMAF. Intriguingly, a homozygous frameshift mutation (p.Leu357Hisfs*11) was identified in the gene encoding CFAP69 (cilia and flagella-associated protein 69), which is highly expressed in testis. The subsequent Sanger sequencing of the CFAP69 coding regions among 34 additional individuals with MMAF revealed a case with homozygous nonsense mutation (p.Trp216*) of CFAP69. Both of these CFAP69 loss-of-function mutations were not present in the human population genome data archived in the 1000 Genomes Project and ExAC databases, nor in 875 individuals of two Han Chinese control populations. Furthermore, we generated the knockout model in mouse orthologue Cfap69 using the CRISPR-Cas9 technology. Remarkably, male Cfap69-knockout mice manifested with MMAF phenotypes.ConclusionOur experimental findings elucidate that homozygous loss-of-function mutations in CFAP69 can lead to asthenoteratospermia with MMAF in humans and mice.


2019 ◽  
Author(s):  
Margot J. Wyrwoll ◽  
Şehime G. Temel ◽  
Liina Nagirnaja ◽  
Manon S. Oud ◽  
Alexandra M. Lopes ◽  
...  

AbstractMale infertility affects ∼7% of men in Western societies, but its causes remain poorly understood. The most clinically severe form of male infertility is non-obstructive azoospermia (NOA), which is, in part, caused by an arrest at meiosis, but so far only few genes have been reported to cause germ cell arrest in males. To address this gap, whole exome sequencing was performed in 60 German men with complete meiotic arrest, and we identified in three unrelated men the same homozygous frameshift variant c.676dup (p.Trp226LeufsTer4) in M1AP, encoding meiosis 1 arresting protein. Then, with collaborators from the International Male Infertility Genomics Consortium (IMIGC), we screened a Dutch cohort comprising 99 infertile men and detected the same homozygous variant c.676dup in a man with hypospermatogenesis predominantly displaying meiotic arrest. We also identified two Portuguese men with NOA carrying likely biallelic loss-of-function (LoF) and missense variants in M1AP among men screened by the Genetics of Male Infertility Initiative (GEMINI). Moreover, we discovered a homozygous missense variant p.(Pro389Leu) in M1AP in a consanguineous Turkish family comprising five infertile men. M1AP is predominantly expressed in human and mouse spermatogonia up to secondary spermatocytes and previous studies have shown that knockout male mice are infertile due to meiotic arrest. Collectively, these findings demonstrate that both LoF and missense M1AP variants that impair its protein cause autosomal-recessive meiotic arrest, non-obstructive azoospermia and male infertility. In view of the evidence from several independent groups and populations, M1AP should be included in the growing list of validated NOA genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxiang Zhang ◽  
Peng Li ◽  
Nachuan Liu ◽  
Tao Jing ◽  
Zhiyong Ji ◽  
...  

Non-obstructive azoospermia (NOA) is the most severe disease in male infertility, but the genetic causes for the majority of NOA remain unknown. FANCM is a member of Fanconi Anemia (FA) core complex, whose defects are associated with cell hypersensitivity to DNA interstrand crosslink (ICL)-inducing agents. It was reported that variants in FANCM (MIM: 609644) might cause azoospermia or oligospermia. However, there is still a lack of evidence to explain the association between different FANCM variants and male infertility phenotypes. Herein, we identified compound heterozygous variants in FANCM in two NOA-affected brothers (c. 1778delG:p. R593Qfs*76 and c. 1663G > T:p. V555F), and a homozygous variant in FANCM (c. 1972C > T:p. R658X) in a sporadic case with NOA, respectively. H&E staining and immunohistochemistry showed Sertoli cell-only Syndrome (SCOS) in the three patients with NOA. Collectively, our study expands the knowledge of variants in FANCM, and provides a new insight to understand the genetic etiology of NOA.


2020 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Miriam Cerván-Martín ◽  
Lara Bossini-Castillo ◽  
Rocío Rivera-Egea ◽  
Nicolás Garrido ◽  
Saturnino Luján ◽  
...  

Infertility is a growing concern in developed societies. Two extreme phenotypes of male infertility are non-obstructive azoospermia (NOA) and severe oligospermia (SO), which are characterized by severe spermatogenic failure (SpF). We designed a genetic association study comprising 725 Iberian infertile men as a consequence of SpF and 1058 unaffected controls to evaluate whether five single-nucleotide polymorphisms (SNPs), previously associated with reduced fertility in Hutterites, are also involved in the genetic susceptibility to idiopathic SpF and specific clinical entities. A significant difference in the allele frequencies of USP8-rs7174015 was observed under the recessive model between the NOA group and both the control group (p = 0.0226, OR = 1.33) and the SO group (p = 0.0048, OR = 1.78). Other genetic associations for EPSTI1-rs12870438 and PSAT1-rs7867029 with SO and between TUSC1-rs10966811 and testicular sperm extraction (TESE) success in the context of NOA were observed. In silico analysis of functional annotations demonstrated cis-eQTL effects of such SNPs likely due to the modification of binding motif sites for relevant transcription factors of the spermatogenic process. The findings reported here shed light on the molecular mechanisms leading to severe phenotypes of idiopathic male infertility, and may help to better understand the contribution of the common genetic variation to the development of these conditions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Wu ◽  
Chengying Li ◽  
Bin Xu ◽  
Ying Xiang ◽  
Xiaoyue Jia ◽  
...  

Abstract Background Circular RNA (circRNA) have been reported to play important roles in cardiovascular diseases including myocardial infarction and heart failure. However, the role of circRNA in atrial fibrillation (AF) has rarely been investigated. We recently found a circRNA hsa_circ_0099734 was significantly differentially expressed in the AF patients atrial tissues compared to paired control. We aim to investigate the functional role and molecular mechanisms of mmu_circ_0005019 which is the homologous circRNA in mice of hsa_circ_0099734 in AF. Methods In order to investigate the effect of mmu_circ_0005019 on the proliferation, migration, differentiation into myofibroblasts and expression of collagen of cardiac fibroblasts, and the effect of mmu_circ_0005019 on the apoptosis and expression of Ito, INA and SK3 of cardiomyocytes, gain- and loss-of-function of cell models were established in mice cardiac fibroblasts and HL-1 atrial myocytes. Dual-luciferase reporter assays and RIP were performed to verify the binding effects between mmu_circ_0005019 and its target microRNA (miRNA). Results In cardiac fibroblasts, mmu_circ_0005019 showed inhibitory effects on cell proliferation and migration. In cardiomyocytes, overexpression of mmu_circ_0005019 promoted Kcnd1, Scn5a and Kcnn3 expression. Knockdown of mmu_circ_0005019 inhibited the expression of Kcnd1, Kcnd3, Scn5a and Kcnn3. Mechanistically, mmu_circ_0005019 exerted biological functions by acting as a miR-499-5p sponge to regulate the expression of its target gene Kcnn3. Conclusions Our findings highlight mmu_circ_0005019 played a protective role in AF development and might serve as an attractive candidate target for AF treatment.


Science ◽  
2021 ◽  
Vol 371 (6525) ◽  
pp. eabd4914
Author(s):  
Sudarshan Gadadhar ◽  
Gonzalo Alvarez Viar ◽  
Jan Niklas Hansen ◽  
An Gong ◽  
Aleksandr Kostarev ◽  
...  

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo–electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Gyeong-Im Shin ◽  
Sun Young Moon ◽  
Song Yi Jeong ◽  
Myung Geun Ji ◽  
Joon-Yung Cha ◽  
...  

AbstractTARGET OF RAPAMYCIN (TOR), a member of the phosphatidylinositol 3-kinase-related family of protein kinases, is encoded by a single, large gene and is evolutionarily conserved in all eukaryotes. TOR plays a role as a master regulator that integrates nutrient, energy, and stress signaling to orchestrate development. TOR was first identified in yeast mutant screens, as its mutants conferred resistance to rapamycin, an antibiotic with immunosuppressive and anticancer activities. In Arabidopsis thaliana, the loss-of-function tor mutant displays embryo lethality, but the precise mechanisms of TOR function are still unknown. Moreover, a lack of reliable molecular and biochemical assay tools limits our ability to explore TOR functions in plants. Here, we produced a polyclonal α-TOR antibody using two truncated variants of TOR (1–200 and 1113–1304 amino acids) as antigens because recombinant full-length TOR is challenging to express in Escherichia coli. Recombinant His-TOR1−200 and His-TOR1113−1304 proteins were individually expressed in E. coli, and a mixture of proteins (at a 1:1 ratio) was used for immunizing rabbits. Antiserum was purified by an antigen-specific purification method, and the purified polyclonal α-TOR antibody successfully detected endogenous TOR proteins in wild-type Arabidopsis and TOR orthologous in major crop plants, including tomato, maize, and alfalfa. Moreover, our α-TOR antibody is useful for coimmunoprecipitation assays. In summary, we generated a polyclonal α-TOR antibody that detects endogenous TOR in various plant species. Our antibody could be used in future studies to determine the precise molecular mechanisms of TOR, which has largely unknown multifunctional roles in plants.


Sign in / Sign up

Export Citation Format

Share Document