scholarly journals Novel ROS-Responsive Marine Biomaterial Fucoidan Nanocarriers with AIE Effect and Chemodynamic Therapy

Author(s):  
Chunjing Guo ◽  
Qiang Chen ◽  
Xue Liu ◽  
Ziting Cheng ◽  
Daquan Chen ◽  
...  

Abstract Chemodynamic therapy (CDT) has been widely used in the treatment of many kinds of tumors, which can effectively induce tumor cell apoptosis by using produced reactive oxygen species (ROS). In this paper, ROS-sensitive multifunctional marine biomaterial natural polysaccharide nanoparticles (CT/PTX) were designed. Aggregation-induced emission (AIE) molecules tetraphenylethylene (TPE) labeled and caffeic acid (CA) modified fucoidan (FUC) amphiphilic carrier material (CA-FUC-TK-TPE, CFTT) was fabricated, in which the thioketal bond was used as the linkage arm between TPE and fucoidan chain, giving the CFTT material ROS sensitivity. In addition, amphiphilic carrier material (FUC-TK-VE, FTVE) composed of thioketal-linked vitamin E and fucoidan was synthesized. The mixed carrier material CFTT and FTVE self-assembled in water to form nanoparticles (CT/PTX ) loaded with PTX and Fe3+. CT/PTX nanoparticles could induce ROS oxidative stress in tumor sites through the CDT effect induced by Fe3+. The CDT effect was combined with the chemotherapeutic drug PTX to achieve tumor inhibition. In vitro cell studies have proved that CT/PTX nanoparticles have excellent cell permeability and tumor cytotoxicity. In vivo antitumor experiments confirmed effective antitumor activity and reduced side effects.

2012 ◽  
Vol 23 (18) ◽  
pp. 3582-3590 ◽  
Author(s):  
Alawiah Alhebshi ◽  
Theodora C. Sideri ◽  
Sara L. Holland ◽  
Simon V. Avery

Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary “Achilles’ heel” of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster–defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily55FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress–related disease.


Author(s):  
Mariachiara Buccarelli ◽  
Quintino Giorgio D’Alessandris ◽  
Paola Matarrese ◽  
Cristiana Mollinari ◽  
Michele Signore ◽  
...  

Abstract Background Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs). Methods In order to identify druggable cancer-related pathways in GBM, we assessed the effect of a selection of 349 compounds on both GSCs and GdECs and we selected elesclomol (STA-4783) as the most effective agent in inducing cell death on both GSC and GdEC lines tested. Results Elesclomol has been already described to be a potent oxidative stress inducer. In depth investigation of the molecular mechanisms underlying GSC and GdEC response to elesclomol, confirmed that this compound induces a strong increase in mitochondrial reactive oxygen species (ROS) in both GSCs and GdECs ultimately leading to a non-apoptotic copper-dependent cell death. Moreover, combined in vitro treatment with elesclomol and the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity compared to TMZ alone. Finally, we used our experimental model of mouse brain xenografts to test the combination of elesclomol and TMZ and confirmed their efficacy in vivo. Conclusions Our results support further evaluation of therapeutics targeting oxidative stress such as elesclomol with the aim of satisfying the high unmet medical need in the management of GBM.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 230
Author(s):  
Hyo-Gu Kang ◽  
Sanghoon Lee ◽  
Pil-Soo Jeong ◽  
Min Ju Kim ◽  
Soo-Hyun Park ◽  
...  

In vitro culture (IVC) for porcine embryo development is inferior compared to in vivo development because oxidative stress can be induced by the production of excessive reactive oxygen species (ROS) under high oxygen tension in the in vitro environment. To overcome this problem, we investigated the effect of lycopene, an antioxidant carotenoid, on developmental competence and the mechanisms involved in mitochondria-dependent apoptosis pathways in porcine embryos. In vitro fertilized (IVF) embryos were cultured in IVC medium supplemented with 0, 0.02, 0.05, 0.1, or 0.2 μM lycopene. The results indicate that 0.1 μM lycopene significantly increased the rate of blastocyst formation and the total cell numbers, including trophectoderm cell numbers, on Day In terms of mitochondria-dependent apoptosis, IVF embryos treated with 0.1 μM lycopene exhibited significantly decreased levels of ROS, increased mitochondrial membrane potential, and decreased expression of cytochrome c on Days 2 and Furthermore, 0.1 μM lycopene significantly decreased the number and percentage of caspase 3-positive and apoptotic cells in Day-6 blastocysts. In addition, Day-2 embryos and Day-6 blastocysts treated with 0.1 μM lycopene showed significantly reduced mRNA expression related to antioxidant enzymes (SOD1, SOD2, CATALASE) and apoptosis (BAX/BCL2L1 ratio). These results indicate that lycopene supplementation during the entire period of IVC enhanced embryonic development in pigs by regulating oxidative stress and mitochondria-dependent apoptosis.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sonia Gandhi ◽  
Andrey Y. Abramov

Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment.


2019 ◽  
Vol 47 (05) ◽  
pp. 1113-1131 ◽  
Author(s):  
Li-Ying Peng ◽  
Lin An ◽  
Ning-Yuan Sun ◽  
Yi Ma ◽  
Xiao-Wei Zhang ◽  
...  

Pulmonary fibrosis (PF) is characterized by myofibroblast activation, which can be triggered by oxidative stress. In this study, we investigated the antifibrotic effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on PF and examined the underlying molecular mechanism. EASM suppressed myofibroblast activation with reduced extracellular matrix deposition in the lungs of mice subjected to bleomycin (BLM) challenge, demonstrating the inhibitory effects on PF. EASM positively alleviated oxidative stress by upregulating nuclear factor-erythroid 2-related factor 2 (Nrf2) and concomitantly downregulating NADPH oxidase 4 (Nox4) in the lungs of BLM-treated mice. This effect was also observed in an in vitro model of transforming growth factor beta 1 (TGF-[Formula: see text]1)-stimulated fibroblast activation. EASM reduced reactive oxygen species (ROS) generation in fibroblasts by stabilizing Nrf2 protein with promoting kelch-like ECH-associated protein 1 (Keap1) degradation. Nrf2 knockdown in the lungs of BLM-treated mice diminished the inhibitory effects of EASM on fibrosis, providing evidence in vivo to address the unique role of Nrf2. Additionally, EASM inhibited TGF-[Formula: see text]1/Smad3 signaling by downregulating protein kinase C delta (PKC-[Formula: see text] and Smad3 phosphorylation (p-Smad3), which led to suppression of the TGF-[Formula: see text]1-induced fibrogenic response. These results indicate that EASM exhibits potent antifibrotic activity in vitro and in vivo, which might be associated with activation of Nrf2 pathway and inhibition of TGF-[Formula: see text]1/Smad3 pathway. Our findings support that EASM may act as an effective antifibrotic remedy for PF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Pan ◽  
Lin Zheng ◽  
Jiawei Fang ◽  
Ye Lin ◽  
Hehuan Lai ◽  
...  

Osteoporosis is characterized by a decrease in bone mass and destruction of the bone microarchitecture, and it commonly occurs in postmenopausal women and the elderly. Overactivation of osteoclasts caused by the inflammatory response or oxidative stress leads to osteoporosis. An increasing number of studies have suggested that intracellular reactive oxygen species (ROS) are strongly associated with osteoclastogenesis. As a novel angiotensin (Ang) II receptor blocker (ARB), azilsartan was reported to be associated with the inhibition of intracellular oxidative stress processes. However, the relationship between azilsartan and osteoclastogenesis is still unknown. In this study, we explored the effect of azilsartan on ovariectomy-induced osteoporosis in mice. Azilsartan significantly inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis and downregulated the expression of osteoclast-associated markers (Nfatc1, c-Fos, and Ctsk) in vitro. Furthermore, azilsartan reduced RANKL-induced ROS production by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Mechanistically, azilsartan inhibited the activation of MAPK/NF-κB signaling pathways, while Nrf2 silencing reversed the inhibitory effect of azilsartan on MAPK/NF-κB signaling pathways. Consistent with the in vitro data, azilsartan administration ameliorated ovariectomy (OVX)-induced osteoporosis, and decreased ROS levels in vivo. In conclusion, azilsartan inhibited oxidative stress and may be a novel treatment strategy for osteoporosis caused by osteoclast overactivation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-19-SCI-19
Author(s):  
Randal J. Kaufman

Abstract Abstract SCI-19 Factor VIII is the protein deficient in the × chromosome-linked bleeding disorder hemophilia A. Previous studies demonstrated that FVIII expression in mammalian cells is limited due to protein misfolding of the newly synthesized polypeptide in the lumen of the endoplasmic reticulum (ER). Although oxidative stress can disrupt protein folding, how protein misfolding and oxidative stress impact each other has not been explored. We have analyzed expression of FVIII to elucidate the relationship between protein misfolding and oxidative stress. Accumulation of misfolded FVIII in the lumen of the ER activates the unfolded protein response (UPR), causes oxidative stress, and induces apoptosis in vitro and in vivo in mice. Strikingly, antioxidant treatment reduces UPR activation, oxidative stress, and apoptosis, and increases FVIII secretion in vitro and in vivo. The findings indicate that reactive oxygen species are a signal generated by misfolded protein in the ER that cause UPR activation and cell death. Genetic or chemical intervention to reduce reactive oxygen species improves protein folding and cell survival and may provide an avenue to treat and/or prevent diseases of protein misfolding. Disclosures No relevant conflicts of interest to declare.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 883
Author(s):  
Gaetana Napolitano ◽  
Gianluca Fasciolo ◽  
Giovanna Salbitani ◽  
Paola Venditti

The ability of aerobic organisms to cope with the attack of radicals and other reactive oxygen species improves by feeding on foods containing antioxidants. Microalgae contain many molecules showing in vitro antioxidant capacity, and their food consumption can protect cells from oxidative insults. We evaluated the capacity of dietary supplementation with 1% dried Chlorella sorokiniana strain 211/8k, an alga rich in glutathione, α-tocopherol, and carotenoids, to counteract an oxidative attack in vivo. We used the hyperthyroid rat as a model of oxidative stress, in which the increase in metabolic capacities is associated with an increase in the release of mitochondrial reactive oxygen species (ROS) and the susceptibility to oxidative insult. Chlorella sorokiniana supplementation prevents the increases in oxidative stress markers and basal oxygen consumption in hyperthyroid rat livers. It also mitigates the thyroid hormone-induced increase in maximal aerobic capacities, the mitochondrial ROS release, and the susceptibility to oxidative stress. Finally, alga influences the thyroid hormone-induced changes in the factors involved in mitochondrial biogenesis peroxisomal proliferator-activated receptor-γ coactivator (PGC1-1) and nuclear respiratory factor 2 (NRF-2). Our results suggest that Chlorella sorokiniana dietary supplementation has beneficial effects in counteracting oxidative stress and that it works primarily by preserving mitochondrial function. Thus, it can be useful in preventing dysfunctions in which mitochondrial oxidative damage and ROS production play a putative role.


Author(s):  
Phung N. Thai ◽  
Lu Ren ◽  
Wilson Xu ◽  
James Overton ◽  
Valeriy Timofeyev ◽  
...  

Abstract Purpose Nonsteroidal anti-inflammatory drugs (NSAIDs) are among one of the most commonly prescribed medications for pain and inflammation. Diclofenac (DIC) is a commonly prescribed NSAID that is known to increase the risk of cardiovascular diseases. However, the mechanisms underlying its cardiotoxic effects remain largely unknown. In this study, we tested the hypothesis that chronic exposure to DIC increases oxidative stress, which ultimately impairs cardiovascular function. Methods and Results Mice were treated with DIC for 4 weeks and subsequently subjected to in vivo and in vitro functional assessments. Chronic DIC exposure resulted in not only systolic but also diastolic dysfunction. DIC treatment, however, did not alter blood pressure or electrocardiographic recordings. Importantly, treatment with DIC significantly increased inflammatory cytokines and chemokines as well as cardiac fibroblast activation and proliferation. There was increased reactive oxygen species (ROS) production in cardiomyocytes from DIC-treated mice, which may contribute to the more depolarized mitochondrial membrane potential and reduced energy production, leading to a significant decrease in sarcoplasmic reticulum (SR) Ca2+ load, Ca2+ transients, and sarcomere shortening. Using unbiased metabolomic analyses, we demonstrated significant alterations in oxylipin profiles towards inflammatory features in chronic DIC treatment. Conclusions Together, chronic treatment with DIC resulted in severe cardiotoxicity, which was mediated, in part, by an increase in mitochondrial oxidative stress.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 990
Author(s):  
Rhoda Olowe ◽  
Sereen Sandouka ◽  
Aseel Saadi ◽  
Tawfeeq Shekh-Ahmad

Oxidative stress (OS) and excessive reactive oxygen species (ROS) production have been implicated in many neurological pathologies, including acute seizures and epilepsy. Seizure-induced damage has been demonstrated both in vitro and in several in vivo seizure and epilepsy models by direct determination of ROS, and by measuring indirect markers of OS. In this manuscript, we review the current reliable methods for quantifying ROS-related and OS-related markers in pre-clinical and clinical epilepsy studies. We first provide pieces of evidence for the involvement of different sources of ROS in epilepsy. We then discuss general methods and assays used for the ROS measurements, mainly superoxide anion, hydrogen peroxide, peroxynitrite, and hydroxyl radical in in vitro and in vivo studies. In addition, we discuss the role of these ROS and markers of oxidative injury in acute seizures and epilepsy pre-clinical studies. The indirect detection of secondary products of ROS such as measurements of DNA damage, lipid peroxidation, and protein oxidation will also be discussed. This review also discusses reliable methods for the assessment of ROS, OS markers, and their by-products in epilepsy clinical studies.


Sign in / Sign up

Export Citation Format

Share Document