scholarly journals Assessing Spatial Vulnerability of Bangladesh to Climate Change and Extremes: A Geographic Information System Approach

Author(s):  
Md Golam Azam ◽  
Md Mujibor Rahman

Abstract Regarding climate change, the world’s most discussed issue for the last few decades, countries like Bangladesh are always noteworthy due to its susceptibility resulting from its geography, hazard proneness, and socioeconomic condition. Thus, this aimed to justify the hypothesis that Bangladesh has spatial diversity in sectors of Climate Change Vulnerability (CCV) by identifying the sectors of vulnerability and visualizing the spatial distribution of vulnerability through multivariate geospatial analysis in the GIS environment. For an integrated assessment of CCV, 38 indicators (socio-economic and biophysical) have been incorporated in the IPCC framework in raster form. Test statistics have shown Kiser-Meyer-Olkin (KMO) value is 0.73 and the p-value of Bartlett’s sphericity is 0. The principal component analysis resulted in 6 principal components with 73.52% total explained variance. Sectors of CCV are the Climatic extreme event vulnerability (PC1), Meteorological shift vulnerability (PC2), Infrastructure and demographic vulnerability (PC3), Ecological vulnerability (PC4), Flood vulnerability (PC5), and Economic vulnerability (PC6) with Cronbach’s alpha 0.90, 0.81, 0.88, 0.72, 0.72, and 0.66 respectively. Among 3 clusters (Jenk’s Natural break) of weighted averaged indices, the highly vulnerable cluster has shown that the PC1 has the highest magnitude with a score of 0.53–0.87, while the PC5 has the highest spatial coverage with 24 districts. The present study however is a new edition in climate vulnerability assessment in Bangladesh since it encompasses multivariate spatial analysis to demonstrate countrywide CCV. This study should be an important tool for setting adaptation and mitigation strategies from the root level to policymaking platforms of Bangladesh.

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


2021 ◽  
Vol 13 (12) ◽  
pp. 6910
Author(s):  
Adil Dilawar ◽  
Baozhang Chen ◽  
Arfan Arshad ◽  
Lifeng Guo ◽  
Muhammad Irfan Ehsan ◽  
...  

Here, we provided a comprehensive analysis of long-term drought and climate extreme patterns in the agro ecological zones (AEZs) of Pakistan during 1980–2019. Drought trends were investigated using the standardized precipitation evapotranspiration index (SPEI) at various timescales (SPEI-1, SPEI-3, SPEI-6, and SPEI-12). The results showed that droughts (seasonal and annual) were more persistent and severe in the southern, southwestern, southeastern, and central parts of the region. Drought exacerbated with slopes of −0.02, −0.07, −0.08, −0.01, and −0.02 per year. Drought prevailed in all AEZs in the spring season. The majority of AEZs in Pakistan’s southern, middle, and southwestern regions had experienced substantial warming. The mean annual temperature minimum (Tmin) increased faster than the mean annual temperature maximum (Tmax) in all zones. Precipitation decreased in the southern, northern, central, and southwestern parts of the region. Principal component analysis (PCA) revealed a robust increase in temperature extremes with a variance of 76% and a decrease in precipitation extremes with a variance of 91% in the region. Temperature and precipitation extremes indices had a strong Pearson correlation with drought events. Higher temperatures resulted in extreme drought (dry conditions), while higher precipitation levels resulted in wetting conditions (no drought) in different AEZs. In most AEZs, drought occurrences were more responsive to precipitation. The current findings are helpful for climate mitigation strategies and specific zonal efforts are needed to alleviate the environmental and societal impacts of drought.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 619
Author(s):  
Sadeeka Layomi Jayasinghe ◽  
Lalit Kumar

Even though climate change is having an increasing impact on tea plants, systematic reviews on the impact of climate change on the tea system are scarce. This review was undertaken to assess and synthesize the knowledge around the impacts of current and future climate on yield, quality, and climate suitability for tea; the historical roots and the most influential papers on the aforementioned topics; and the key adaptation and mitigation strategies that are practiced in tea fields. Our findings show that a large number of studies have focused on the impact of climate change on tea quality, followed by tea yield, while a smaller number of studies have concentrated on climate suitability. Three pronounced reference peaks found in Reference Publication Year Spectroscopy (RYPS) represent the most significant papers associated with the yield, quality, and climate suitability for tea. Tea yield increases with elevated CO2 levels, but this increment could be substantially affected by an increasing temperature. Other climatic factors are uneven rainfall, extreme weather events, and climate-driven abiotic stressors. An altered climate presents both advantages and disadvantages for tea quality due to the uncertainty of the concentrations of biochemicals in tea leaves. Climate change creates losses, gains, and shifts of climate suitability for tea habitats. Further studies are required in order to fill the knowledge gaps identified through the present review, such as an investigation of the interaction between the tea plant and multiple environmental factors that mimic real-world conditions and then studies on its impact on the tea system, as well as the design of ensemble modeling approaches to predict climate suitability for tea. Finally, we outline multifaceted and evidence-based adaptive and mitigation strategies that can be implemented in tea fields to alleviate the undesirable impacts of climate change.


2021 ◽  
Vol 7 (3) ◽  
pp. 202
Author(s):  
Johannes Delgado-Ospina ◽  
Junior Bernardo Molina-Hernández ◽  
Clemencia Chaves-López ◽  
Gianfranco Romanazzi ◽  
Antonello Paparella

Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.


2021 ◽  
Vol 13 (6) ◽  
pp. 3170
Author(s):  
Avri Eitan

Evidence shows that global climate change is increasing over time, and requires the adoption of a variety of coping methods. As an alternative for conventional electricity systems, renewable energies are considered to be an important policy tool for reducing greenhouse gas emissions, and therefore, they play an important role in climate change mitigation strategies. Renewable energies, however, may also play a crucial role in climate change adaptation strategies because they can reduce the vulnerability of energy systems to extreme events. The paper examines whether policy-makers in Israel tend to focus on mitigation strategies or on adaptation strategies in renewable energy policy discourse. The results indicate that despite Israel’s minor impact on global greenhouse gas emissions, policy-makers focus more on promoting renewable energies as a climate change mitigation strategy rather than an adaptation strategy. These findings shed light on the important role of international influence—which tends to emphasize mitigation over adaptation—in motivating the domestic policy discourse on renewable energy as a coping method with climate change.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


2021 ◽  
pp. 1-11
Author(s):  
Jason A. Rech ◽  
Jeffrey S. Pigati ◽  
Kathleen B. Springer ◽  
Stephanie Bosch ◽  
Jeffrey C. Nekola ◽  
...  

Abstract Recent studies have shown the oxygen isotopic composition (δ18O) of modern terrestrial gastropod shells is determined largely by the δ18O of precipitation. This implies that fossil shells could be used to reconstruct the δ18O of paleo-precipitation as long as the isotopic system, including the hydrologic pathways of the local watershed and the gastropod systematics, is well understood. In this study, we measured the δ18O values of 456 individual gastropod shells collected from paleowetland deposits in the San Pedro Valley, Arizona that range in age from ca. 29.1 to 9.8 ka. Isotopic differences of up to 2‰ were identified among the four taxa analyzed (Succineidae, Pupilla hebes, Gastrocopta tappaniana, and Vallonia gracilicosta), with Succineidae shells yielding the highest values and V. gracilicosta shells exhibiting the lowest values. We used these data to construct a composite isotopic record that incorporates these taxonomic offsets, and found shell δ18O values increased by ~4‰ between the last glacial maximum and early Holocene, which is similar to the magnitude, direction, and rate of isotopic change recorded by speleothems in the region. These results suggest the terrestrial gastropods analyzed here may be used as a proxy for past climate in a manner that is complementary to speleothems, but potentially with much greater spatial coverage.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


Author(s):  
Walter Leal Filho ◽  
Abul Al-Amin ◽  
Gustavo Nagy ◽  
Ulisses Azeiteiro ◽  
Laura Wiesböck ◽  
...  

There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events.


Sign in / Sign up

Export Citation Format

Share Document