Rosaniline Hydrochloride Encapsulated MCM-48: Fluorescent and Electrochemical Sensor for Dopamine

Author(s):  
Sarojmoni Kalita ◽  
Diganta Kumar Das

Abstract The dye Rosaniline hydrochloride (RANH) has been successfully incorporated in MCM-48 (designated as RANH@MCM-48) and characterised by various spectroscopic methods including FT-IR, SEM, EDX and N2 adsorption-desorption isotherm. RANH@MCM-48 in aqueous medium acts as fluorescence “on” sensor for neurotransmitter dopamine (DA) in presence of its main biological interfering agents ascorbic acid or vitamin c (AA) along with Glucose, Cholesterol and Uric acid. The limits of detection (LOD) were found to be 65 nM and 51 nM respectively in absence and in presence of AA. The binding of DA to RANH@MCM-48 is found to be reversible with respect to EDTA2-. The fluorescence intensity vs. pH plot shows a narrow fluorescence window of 7.2 to 8.8. RANH@MCM-48 has been successfully applied for DA detection in artificial cerebrospinal fluid (ACF) and bovine serum albumin (BSA) with LOD values 27 nM and 22.5 nM respectively. Platinum disc electrode has been modified with RANH@MCM-48 which showed distinct oxidation peaks with a separation of 0.188 V in cyclic voltammetry (CV). The LOD for DA in presence of AA determined from oxidation current is 77.5 nM. The voltammetric detection of DA is found to be free from common interfering species Na+, K+, Ca2+, Fe2+, Uric acid, Cholesterol and Glucose.

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ranju Bansal ◽  
Ranjit Singh ◽  
Khushpal Kaur

Abstract Background Environment-friendly fast and accurate mid-infrared spectroscopic methods have been developed for the quantitative analysis of doxorubicin hydrochloride (DOX) and arterolane maleate (ALM) in bulk and marketed formulations. Both transmittance and reflectance modes have been used for the analysis and a comparison has been drawn for better accuracy. The analytical methods were validated in accordance with International Council for Harmonisation (ICH) guidelines Results The proposed methods have been successfully developed and validated for the quantification of doxorubicin and arterolane maleate in solid bulk and dosage form. High recovery values in both the modes, while analysing DOX and ALM, indicated good accuracy of the methods. The methods showed excellent repeatability and intermediate precision [% RSD (Relative Standard Deviation < 2.0%]. The assay values of the drugs in solid dosage forms were also found close to the labelled claim. Conclusion The proposed Fourier transform infrared (FT-IR) spectroscopic methods were found to be specific, reproducible, valid and could be used as general methods for the quantification of most of the solid drug preparations such as tablets, capsules and powders.


2019 ◽  
Vol 41 (1) ◽  
pp. 72-72
Author(s):  
Jilei Liang Jilei Liang ◽  
Mengmeng Wu Mengmeng Wu ◽  
Hongmei Cai Hongmei Cai ◽  
Hao Wang Hao Wang ◽  
Hua Huang Hua Huang ◽  
...  

Carbon microspheres (CMs) with a diameter of 5-10 μm have been synthesized by hydrothermal carbonization of starch and L-arginine. The surface property and structure of CMs were examined by FT-IR spectra, N2 adsorption-desorption isotherms and SEM images. These characterizations indicated that the L-arginine does not connect into the CMs but it promotes the starch hydrolysis and polymerization-condensation reaction of intermediate, which accelerates the formation of CMs and improves the yield in shorter time. The surface property of CMs determines adsorption capacity for acetic acid. By contrast, the porosity resulted from the carbonization at 500 and#176;C dominates the adsorption capacity for acetic acid.


2001 ◽  
Vol 280 (2) ◽  
pp. E349-E356 ◽  
Author(s):  
Noreen F. Rossi ◽  
Haiping Chen

Endothelin (ET) acts within the central nervous system to increase arterial pressure and arginine vasopressin (AVP) secretion. This study assessed the role of the paraventricular nuclei (PVN) in these actions. Intracerebroventricular ET-1 (10 pmol) or the ETA antagonist BQ-123 (40 nmol) was administered in conscious intact or sinoaortic-denervated (SAD) Long-Evans rats with sham or bilateral electrolytic lesions of the magnocellular region of the PVN. Baseline values did not differ among groups, and artificial cerebrospinal fluid (CSF) induced no significant changes. In sham-lesioned rats, ET-1 increased mean arterial pressure (MAP) 15.9 ± 1.3 mmHg in intact and 22.3 ± 2.7 mmHg in SAD ( P < 0.001 ET-1 vs. CSF) rats. PVN lesions abolished the rise in MAP: −0.1 ± 2.8 mmHg in intact and 0.0 ± 2.9 mmHg in SAD. AVP increased in only in the sham-lesioned SAD group 8.6 ± 3.5 pg/ml ( P < 0.001 ET-1 vs. CSF). BQ-123 blocked the responses. Thus the integrity of the PVN is required for intracerebroventricularly administered ET-1 to exert pressor and AVP secretory effects.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3243 ◽  
Author(s):  
Michał Szmatoła ◽  
Justyna Chrobak ◽  
Rafał Grabowski ◽  
Jolanta Iłowska ◽  
Julia Woch ◽  
...  

Raw vegetable oil from Crambe abyssinica was subjected to oxidative treatment to enhance its viscosity. The oxidation processes were carried out in the presence of N-hydroxyphthalimide with or without supercritical CO2 as a solvent. Four spectroscopic techniques (Raman, UV-VIS, FT-IR, NMR) were applied to assess the chemical changes taking place during the oxidation. Raman and NMR spectroscopy proved best in the assessment of the chemical transformations leading to increased viscosity of the modified vegetable oil.


2011 ◽  
Vol 335-336 ◽  
pp. 989-993
Author(s):  
Mi Ouyang ◽  
Zhen Wei Yu ◽  
Yi Xu ◽  
Yu Jian Zhang ◽  
Cheng Zhang

Copolymers based on 1, 4-diethoxybenzene (DEB) and 3, 4-ethylenedioxythiophene (EDOT) were electrochemically synthesized and characterized. The structures of the copolymers were established by 1H NMR and FT-IR spectroscopy. The results indicated the final product was a copolymer instead of a blend or a composite. The physical properties were systematically investigated by cyclic voltammetry, UV-vis absorption and fluorescence. The PL maximum of copolymers presented obviously red-shift to long wavelength as the feed ratio of EDOT in monomer mixture increased.


2013 ◽  
Vol 655-657 ◽  
pp. 1927-1930 ◽  
Author(s):  
Guang Na Zhang ◽  
Zhi Yue Xia ◽  
Jian Ming Ouyang ◽  
Li Kuan

The presence of crystallites in urine is closely related to stones formation. In this article, the components, morphology of nano- and micro-crystallites in urines of 20 uric acid (UA) stone formers as well as their relationship with the formation of UAstones were comparatively studied using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The main constituent of urinary crystallites was uric acid. Their particle size distribution was highly uneven, ranging from several nanometers to several tens of micrometers, and obvious aggregation was observed. These results showed that there was close relationship among stone components, urinary crystallites composition and urine pH.


1999 ◽  
Vol 38 (S1) ◽  
pp. 47 ◽  
Author(s):  
Shinya Higashimoto ◽  
Masaya Matsuoka ◽  
Hiromi Yamashita ◽  
Masakazu Anpo

Sign in / Sign up

Export Citation Format

Share Document