scholarly journals Induction, identification, and characterization of autoallo-dodecaploid barnyard grass (Echinochloa crus-galli L.) using in vitro colchicine treatment

Author(s):  
Xiaolu Yang ◽  
Wei Wang ◽  
Xiaoling Zhou ◽  
Ziyi Feng ◽  
Pincang Lv ◽  
...  

Abstract Polyploidization is a major trend in plant evolution that has many advantages over diploid. Barnyard grass (Echinochloa crusgalli L.) has many good characteristics, but has not been fully utilized until now. In this study, we report for the first time the in vitro induction of autoallo-dodecaploid E. crus-galli by colchicine treatment. Calli derived from young panicles were transferred to liquid medium containing different concentrations of colchicine (0.01, 0.05, or 0.1% w/v) and incubated for 24, 48, or 72 h. Treatment with 0.05% colchicine for 48 h was the most effective condition for producing polyploid plants, yielding 42.9% dodecaploids. The relative DNA content of the induced dodecaploids was twice that of wild-type hexaploids. The chromosome number of dodecaploids was 2n = 12x = 108, whereas that of hexaploids was 2n = 6x = 54. Compared with the hexaploids, the dodecaploids had larger individual stomata, but a lower stomatal density. There were significant differences between dodecaploid and hexaploid plants in terms of morphological variables, such as plant height, leaf length, panicle length, and grain size. Dodecaploid plants showed the obvious “gigas” effects of polyploid organs, as well as significantly reduced seed set. The nutritional concentrations of crude protein, crude fat, crude ash, and nitrogen-free extract in the dodecaploid were higher than those in the hexaploid, whereas the concentration of crude fiber in the dodecaploid was lower. Compared with the hexaploid, the concentrations of calcium, iron and some free amino acids in dodecaploid plants were significantly higher than in hexaploids. The dodecaploid E. crus-galli had been obtained successfully by treating calli with colchicine. And E. crus-galli has the potential to be developed as a new type of high quality forage crop for cultivation under stress conditions, especially the dodecaploid with its greater nutritional value.

2004 ◽  
Vol 44 (10) ◽  
pp. 1065 ◽  
Author(s):  
M. K. Smith ◽  
S. D. Hamill ◽  
B. J. Gogel ◽  
A. A. Severn-Ellis

Ginger autotetraploids were produced by immersing shoot tips in a 0.5% w/v colchicine, 2% v/v dimethyl sulfoxide solution for 2 h. Stomatal measurements were used as an early indicator of ploidy differences in culture with mean stomata length of tetraploids (49.2 μm) being significantly larger than the diploid (38.8 µm). Of the 500 shoot tips treated, 2% were characterised as stable autotetraploid lines following field evaluation over several seasons. Results were confirmed with flow cytometry and, of the 7 lines evaluated for distinctness and uniformity, 6 were solid tetraploid mutants and 1 was a periclinal chimera. Significant differences were noted between individual tetraploid lines in terms of shoot length, leaf length, leaf width, size of rhizome sections (knob weight) and fibre content. The solid autotetraploid lines had significantly wider, greener leaves than the diploids, they had significantly fewer but thicker shoots and, although ‘Queensland’ (the diploid parent from which the tetraploids were derived) had a greater total rhizome mass at harvest, its knob size was significantly smaller. From the autotetraploid lines, one line was selected for commercial release as ‘Buderim Gold’. It compared the most favourably with ‘Queensland’ in terms of the aroma/flavour profile and fibre content at early harvest, and had consistently good rhizome yield. More importantly it produced large rhizome sections, resulting in a higher recovery of premium grade confectionery ginger and a more attractive fresh market product.


2015 ◽  
Vol 43 (1) ◽  
pp. 66 ◽  
Author(s):  
Fitri Yulianti ◽  
Agus Purwito ◽  
Ali Husni ◽  
Diny Dinarti

Seedless fruit is one of the criteria (necessary) to improve the quality of Simadu tangerine. The most effective method to obtain seedless triploid cultivars is hybridisation between tetraploid and diploid parents. Simadu tangerine is a diploid plant. Tetraploid Simadu tangerine can be obtained with doubling chromosome using colchicines.The aim of this research was to obtain tetraploid Simadu tangerine shoot which would serve as parent to produced seedless Simadu tangerine. Shoot-tips of Simadu tangerine without leaves were treated with colchicines at four different concentrations (0, 0.1, 0.2, and 0.3%) for 3 hours. The results showed that the high concentration of 0.3% reduced survival rate. The colchicine treatments reduced growth of shoot-tip of Simadu Tangerine.The leaves of colchicines treated shoots were thicker than control. Leaves from control (0% colchicine) and 0.1% colchicine treated shoots had 8.67 and 18.25 chloroplast per pair of guard cells. Compared to those of control, leaves with 0.1% colchicine had lower stomatal density, and larger stomatal size. It appeared that 0.1% colchicine treatment resulted in tetraploid Simadu Tangerine Shoot.<br />Keywords:chloroplasts, doubling chromosomes, stomatal size, stomatal density


2018 ◽  
Vol 54 (No. 3) ◽  
pp. 135-142
Author(s):  
He Ping ◽  
Li Linguang ◽  
Cheng Lailiang ◽  
Wang Haibo ◽  
Chang Yuansheng

Variation with respect to both ploidy level and morphology was characterized for a set of 690 seedlings of the triploid apple variety Jonagold, of which 481 were obtained via in vitro culture of mature embryos, and 209 via conventional germination. Their ploidy level was determined by a combination of flow cytometry and root tip chromosome counting. The assessed morphological traits were leaf length, width and shape, stomatal density, guard cell length and chloroplast width and number. A total of 452 seedlings were aneuploid, 225 diploid, nine triploid and four tetraploid. All four tetraploid seedlings were derived by in vitro culture. When the triploid seedlings were genotyped at the S-locus and at selected microsatellite loci, we found that the Jonagold stigma was compatible with pollen which shared some of the maternal parent S-locus alleles.  


2020 ◽  
Vol 7 (01) ◽  
pp. 37-44
Author(s):  
Ulil Azmi Nurlaili Afifah ◽  
Ni Made Armini Wiendi ◽  
Awang Maharijaya

Patchouli (Pogostemon cablin Benth.; 2n = 32) is an aromatic herbaceous plant commonly cultivated for use in the the fragrance industry. As patchouli is propagated by cuttings polyploidization induction by colchicine treatment was conducted to obtain a new genotype with high patchouli alcohol content. This research aimed to increase patchouli genetic diversity with colchicine treatment by the formation of a polyploid plant. Axillary buds from single node cutting of aseptic plantlets were used as the explants. The experiment was arranged using a factorial completely randomized design with two factors, namely the concentration of colchicine and the immersion duration. Genetic diversity of patchouli was successfully enhanced by adjusting the colchicine concentration and immersion treatment. lethal concentration (LC) of 50% in patchouli was 0.132% and the LC 50% for soaking time was 60.16 hours. The number of chloroplasts, stomatal length and chromosome number increased with increasing ploidy, whereas stomatal density and the number of trichomes decreased. The chromosome number of 16 patchouli mutants in generation 4 was still unstable, and a chimera was found with mixoploidy between 20-80. A hierarchical dendogram clustered 16 patchouli mutants into four different groups.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 1879-1886 ◽  
Author(s):  
Phu-Long Pham ◽  
Ying-Xue Li ◽  
He-Rong Guo ◽  
Rui-Zhen Zeng ◽  
Li Xie ◽  
...  

Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicinal plant. It produces various phytochemicals, particularly polysaccharides, which have nutraceutical and pharmaceutical values. To increase its biomass production and polysaccharide content, our breeding program has generated a series of polyploid cultivars through colchicine treatment of protocorm-like bodies (PLBs). The present study compared two tetraploid cultivars, 201-1-T1 and 201-1-T2, with their diploid parental cultivar, 201-1, in an established in vitro culture system. Tetraploid ‘201-1-T1’ and ‘201-1-T2’ had shorter leaves and shorter and thicker stems and roots, and they produced higher biomass compared with the diploid cultivar. The length and width of stomata significantly increased, but stomatal density decreased in tetraploid cultivars. The PLB induction rates from the stem node explants of the tetraploid cultivars were significantly higher than those of diploid. However, the PLB proliferation of tetraploids was lower than that of the diploid. The mean number of plantlets regenerated from tetraploid PLBs was also lower than that of the diploid after 4 months of culture. Polysaccharide contents in stems, leaves, and roots of 6-month-old tetraploid plantlets were significantly higher than those of diploids. The polysaccharide content in the stem of ‘201-1-T1’ was 12.70%, which was a 2-fold increase compared with the diploid cultivar. Our results showed that chromosome doubling could be a viable way of improving D. officinale in biomass and polysaccharide production.


2020 ◽  
Vol 62 ◽  
pp. 85-90
Author(s):  
L. V. Tashmatova ◽  
O. V. Matsneva ◽  
T. M. Khromova ◽  
V. V. Shakhov

The article presents methods of experimental polyploidy of fruit, berry and ornamental plants. The purpose of this review is to highlight the problems and prospects of polyploidization of plants in the open ground and in vitro culture and the possibility of their application for apple trees. For the purpose of obtaining apple tetraploids as donors of diploid gametes, seed seedlings were treated with a solution of colchicine in concentrations of 0.1-0.4 % for 24 and 48 hours. Colchicine concentrations of 0.3 % and 0.4 % at 48 hours of treatment had a detrimental eff ect on their development. As a result, tetraploids and chimeras were obtained from seeds from free pollination of the varieties Orlik, Svezhest, Kandil Orlovsky, as well as from seeds obtained from crossing the varieties Svezhest×Bolotovskoe, Moskovskoe Оzherel’e×Imrus, Girlyanda×Venyaminovskoe. The optimal concentration of colchicine was 0.1 %. Methods of colchicine treatment have been studied: 1) adding to the nutrient medium, colchicine concentration: 0.01%, 0.02%, exposure time 24h-19 days; 2) applying amitotic solution to the growth point, colchicine concentration: 0.1 %, 0.2 %, exposure time 24h-7 days. To increase the penetration of colchicine through the cell walls, a 0.1 % dimexide solution was used. Studies have shown that high concentrations and prolonged exposure to colchicine reduce the viability of explants.


1986 ◽  
Vol 6 (5) ◽  
pp. 1552-1561
Author(s):  
R Esteban ◽  
R B Wickner

Killer strains of Saccharomyces cerevisiae bear at least two different double-stranded RNAs (dsRNAs) encapsidated in 39-nm viruslike particles (VLPs) of which the major coat protein is coded by the larger RNA (L-A dsRNA). The smaller dsRNA (M1 or M2) encodes an extracellular protein toxin (K1 or K2 toxin). Based on their densities on CsCl gradients, L-A- and M1-containing particles can be separated. Using this method, we detected a new type of M1 dsRNA-containing VLP (M1-H VLP, for heavy) that has a higher density than those previously reported (M1-L VLP, for light). M1-H and M1-L VLPs are present together in the same strains and in all those we tested. M1-H, M1-L, and L-A VLPs all have the same types of proteins in the same approximate proportions, but whereas L-A VLPs and M1-L VLPs have one dsRNA molecule per particle, M1-H VLPs contain two M1 dsRNA molecules per particle. Their RNA polymerase produces mainly plus single strands that are all extruded in the case of M1-H particles but are partially retained inside the M1-L particles to be used later for dsRNA synthesis. We show that M1-H VLPs are formed in vitro from the M1-L VLPs. We also show that the peak of M1 dsRNA synthesis is in fractions lighter than M1-L VLPs, presumably those carrying only a single plus M1 strand. We suggest that VLPs carrying two M1 dsRNAs (each 1.8 kilobases) can exist because the particle is designed to carry one L-A dsRNA (4.5 kilobases).


2017 ◽  
Vol 39 (5) ◽  
Author(s):  
JÚLIO CÉSAR GOMES PEREIRA ◽  
SELMA SILVA ROCHA ◽  
LUCIANA CARDOSO NOGUEIRA LONDE ◽  
MARCELA CAROLINE BATISTA DA MOTA ◽  
PABLO FERNANDO SANTOS ALVES ◽  
...  

ABSTRACT The banana crop stands out as an activity of great social and economic importance in Brazil, which occupies the fifth place in world production. Synthetic seed production is becoming promising for a micropropagation and in vitro conservation. The aim of the study was to analyze the conversion and growth of ‘Prata-anã’ banana’s microshoots clone Gorutuba from synthetic seed in MS medium and vermiculite, different substrates and concentrations of BAP (6-benzylaminopurine) associated with ANA (acetic naphthalene acid) in the constitution of its capsule were tested. The microshoots were immersed in the sodium alginate matrix (3%) and dripped in a solution of CaCl2.2H2O (100 mM) for complexation and then in KNO3 solution (100 mM) to decomplex. The experimental design was completely randomized in a 2 x 5 factorial design (substrate x BAP concentrations), containing different substrates (MS culture medium and vermiculite) and BAP concentrations (2.22, 4.44, 6.66, 8.88 and 13.32 µmol L-1) associated with NAA (naphthalene acetic acid) 0.54 µmol L-1, totaling 10 treatments, with 4 replicates, and that each replicate containing 5 seeds. The evaluations of conversion, number of leaves, leaf length, leaf height, number of roots, root length and oxidation were performed at 30 and 60 days.The use of the MS medium provided better growth results in relation to vermiculite as substrate, in which the different BAP concentrations did not differ from each other. It was found that, in MS culture medium, BAP concentrations above 8.88 µmol L-1 in the capsule composition are not indicated for microshoots growth.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5637
Author(s):  
Maristella Maggi ◽  
Greta Pessino ◽  
Isabella Guardamagna ◽  
Leonardo Lonati ◽  
Cristina Pulimeno ◽  
...  

E. coli L-asparaginase is an amidohydrolase (EC 3.5.1.1) which has been successfully used for the treatment of Acute Lymphoblastic Leukemia for over 50 years. Despite its efficacy, its side effects, and especially its intrinsic immunogenicity, hamper its usage in a significant subset of cases, thus limiting therapeutic options. Innovative solutions to improve on these drawbacks have been attempted, but none of them have been truly successful so far. In this work, we fully replaced the enzyme scaffold, generating an active, miniaturized form of L-asparaginase by protein engineering of a camel single domain antibody, a class of antibodies known to have a limited immunogenicity in humans. We then targeted it onto tumor cells by an antibody scFv fragment directed onto the CD19 B-cell surface receptor expressed on ALL cells. We named this new type of nanobody-based antibody-drug conjugate “Targeted Catalytic Nanobody” (T-CAN). The new molecule retains the catalytic activity and the binding capability of the original modules and successfully targets CD19 expressing cells in vitro. Thanks to its theoretically reduced immunogenic potential compared to the original molecule, the T-CAN can represent a novel approach to tackle current limitations in L-asparaginase usage.


Sign in / Sign up

Export Citation Format

Share Document