scholarly journals Endogenous Calcium Mediated The Seedling Growth And Fluoride Stress Tolerance In Four Bean Genotypes

Author(s):  
Sara Chahine ◽  
Sara Melito ◽  
Vittoria Giannini ◽  
Pier Paolo Roggero ◽  
Giovanna Seddaiu

Abstract Fluoride (F) pollution is a global environmental problem representing a severe risk for food and vegetables grown in contaminated soils. Phaseolus vulgaris L. is widely cultivated in arid and semi-arid regions and in F contaminated areas of the world. F tolerance during germination and seedling growth was evaluated for four bean ecotypes: Borlotto nano and three African genotypes (Lyamungu 85, Lyamungu 90 and Jesca).Seeds were grown in sand enriched with NaF or KF at three different levels (0, 80 and 200 mg kg-1). NaCl was used as a benchmark to determine a potential effect of different Na levels in plant. Total F content and minerals accumulation (Na, K and Ca) in roots and shoots were measured. The translocation factor, growth ratio, F tolerance index were evaluated to estimate plant-salt response. Germination rate decreased with increased F level. Borlotto was more F sensitive (0% germination with 200 mg kg-1of KF and NaF) than African genotypes. Under the highest F concentration (200 mg kg-1), F preferentially accumulated in shoots (Jesca 75.7 mg kg-1, Lyamungu 85 100.1 mg kg-1 and Lyamungu 90 115.4 mg kg-1). Ca content in roots was negatively correlated to F absorption, suggesting its antagonistic role to F mobility.Based on these parameters, Jesca and Lyamungu 85 were the most tolerant species recording a low F uptake and a high Ca content in the root. This study highlighted the central role of Ca, as a key secondary messenger in regulating the plant growth and development under F stress.

2011 ◽  
Vol 233-235 ◽  
pp. 707-711
Author(s):  
You Bao Wang ◽  
Nan Nan Wang ◽  
Shan Hu

In this study, Copper (Cu) tolerance inChlorophytum comosumwas tested by pot-planting. The results showed that the tolerance index (TI) ofC. comosumwas above 100 in soil Cu concentration of 50mg·kg-1. With the increase of Cu concentration in soil, the MDA content increased, but had no significant differences with the control until 500mg·kg-1. The value of chlorophyll a/b had no significant differences with the control in all treatments. Meanwhile, the bioaccumulation coefficient (BC) and translocation factor (TF) value ofC. comosumwere 1.287 and 0.687 respectively in Cu concentration of soil up to 500mg·kg-1. For the advantages of high tolerance, high accumulation and high ornamental value,C. comosummay be a potential Cu-accumulator and have tremendous application value in the treatment of Cu-contaminated soils.


2020 ◽  
Author(s):  
Teodoro Miano ◽  
Hana Voca ◽  
Lea Piscitelli ◽  
Anna Daniela Malerba ◽  
Donato Mondelli ◽  
...  

<p>Mining activities generate a great deal of particulate emissions and waste slag enriched in heavy metals that contaminate the surrounding, that is soil, water and air. Such effects are particularly serious and pose a severe ecological and human health risk, mainly if smelters are located in the proximity of urban areas. This is the case regarding the Kosovo, where from the 1930s the British company "Seltrust" founded Trepca Mining & Metallurgical Complex, causing a high level of pollution especially in the area of Mitrovicë, northern Kosovo. Two soils, A and B, have been sampled from two different sites in Mitrovicë municipality, showing a total content of Pb and Zn, respectively, of 2153 and 3087 mg kg<sup>-1</sup>, and 3214 and 4619 mg kg<sup>-1</sup>. A pot experiment was carried out aiming to understand the phytoremediation potential of two selected non-food crops (Sorghum bicolor L. Moench and Brassica napus cv. Westar) chosen for their economic importance and heavy metal accumulation capacities. Sorghum and canola plants were cultivated in polluted soils A and B. For both plant species, the accumulation of heavy metals proved to be higher in the roots. Indeed, in order to obtain an adequate phytoextraction, it is required that the metals be moved to the epigeal part of the plants, and plants with bioconcentration factor (BCF) and translocation factor (TF) values < 1 are not considered suitable for phytoextraction. The results obtained in this study indicate that, although canola was quite effective in translocating metals from roots to aerial parts, both sorghum and canola are not suitable for phytoextraction since their coefficient values were < 1. Anyway, both plants, especially canola ones, grew up in presence of high level of Pb and Zn pollution, thus they could be used for phytostabilisation process. Actually, the Tolerance Index (TI) values of the sorghum and canola clearly suggest, under the experimental conditions used in this study, a better performance of the canola in tolerating the presence of Pb and Zn in the soil, even if in soil B was not found the same efficiency shown by the same plants grown in soil A. Probably, since soil B has an absolute higher content of Pb and Zn and a lower pH, the availability of both metals is slightly higher, which may have induced in the plants that grow there a more intense condition of stress. This study shows that canola, unlike sorghum, can be an ideal choice for phytostabilization, and its breeding can represent an effective alternative to food crop. </p>


2019 ◽  
Vol 286 (1917) ◽  
pp. 20191520 ◽  
Author(s):  
Kai Fang ◽  
Lin Chen ◽  
Jie Zhou ◽  
Zhi-Ping Yang ◽  
Xing-Fan Dong ◽  
...  

Some exotic plants become invasive because they partially release from soil-borne enemies and thus benefit from positive plant–soil feedbacks (PSFs) in the introduced range. However, reports that have focused only on PSFs may exaggerate the invader's competitiveness. Here, we conducted three experiments to characterize plant–soil–foliage feedbacks, including mature leaves (ML), leaf litter (LL), rhizosphere soil (RS) and leaves plus soil (LS), on the early growth stages of the invasive plant Ageratina adenophora . In general, the feedbacks from aboveground (ML, LL) adversely affected A. adenophora by delaying germination time, inhibiting germination rate and reducing seedling growth. The increased invasion history exacerbated the adverse effects of LL and LS feedbacks on seedling growth. These adverse effects were partially contributed by more abundant fungi (e.g. Didymella ) or/and more virulent fungi (e.g. Fusarium ) developed in the aboveground part of A. adenophora during the invasion. Interestingly, the aboveground adverse effects can be weakened by microbes from RSs. Our novel findings emphasize the important role of aboveground feedbacks in the evaluation of plant invasiveness, and their commonness and significance remain to be explored in other invasive systems.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 322 ◽  
Author(s):  
Ali El-Keblawy ◽  
Masarra Elgabra ◽  
Kareem A. Mosa ◽  
Amal Fakhry ◽  
Sameh Soliman

Several studies have assessed the function and significance of the presence of dead, hardened husks on germination and seedling growth in several grass species and reached to inconsistent results. Here, we assess the roles of husks (dead lemma and palea) and an inner membrane surrounding the grains on germination behaviour and seedling growth of Brachypodium hybridum, one of three species of the genetic model B. distachyon complex, in an arid mountain of Arabia. The interactive effects between temperature and the incubation light were assessed on germination of husked and dehusked-demembraned grains. Germination and seedling growth were assessed for different combinations of grain treatments (soaked and non-soaked husked, dehusked-membraned and dehusked-demembraned). Dehusked-demembraned grains were also germinated in different dormancy regulating compounds (DRCs) and light qualities (light, dark and different red: far red [R: FR] ratios). The results indicated an insignificant difference between husked and dehusked-membraned grains on final germination and the germination rate index (GRI), with the former producing significantly bigger seedlings. Removal of the inner-membrane resulted in a significant reduction in all traits. Soaking grains in water resulted in significant enhancements in germination and seedling growth of only husked grains. Husked-membraned and demembraned grains germinated more significantly and faster at lower rather than higher temperatures. None of different concentrations of several DRCs succeeded in enhancing final germination of dehusked-demembraned grains. Red-rich light significantly enhanced germination of dehusked-membraned grains in comparison to other light qualities. It could be concluded that the role of husks is to mainly enhance seedling growth, while the major role of the membrane is to increase final germination. The ability of red-rich light in enhancing the germination of dehusked-membraned but not dehusked-demembraned grains suggest a role for the inner membrane in regulating dormancy through differential filtering of light properties.


Objective: the present study was aimed to evaluate the role of pharmaceutical services in improving the outcome of mineral bone disorder in patients with advanced chronic kidney disease. Methodology: One hundred and twenty patients with chronic kidney disease-mineral bone disorder (CKD-MBD) screened for eligibility, seventy-six patients enrolled in the study and randomly allocated into two groups: pharmaceutical care and usual care, both groups interviewed by the pharmacist using specific questionnaire for assessing the quality of life (QoL). All the drug related problems (DRPs) including drug-drug interactions (DDIs) were recorded by the pharmacist. Blood samples were collected and utilized for analyzing the levels of vitamin D, phosphorous, calcium, albumin and parathyroid hormone at baseline and three months after. The pharmaceutical care group received all the educations about their medications and how to minimize DRPs; improve the QoL. Additionally, the pharmaceutical intervention included correcting the biochemical parameters. Results: Pharmaceutical care significantly improved patients QoL and minimized DRPs and DDIs. It was also effective in improving the biochemical parameters. Conclusion: Pharmaceutical care has a positive impact on improving the outcome of patients with CKD-MBD through attenuating DRPs, improving the biochemical parameters and the QoL.


Author(s):  
Jessica F. Green

This book examines the role of nonstate actors in global environmental politics, arguing that a fuller understanding of their role requires a new way of conceptualizing private authority. It identifies two distinct forms of private authority—one in which states delegate authority to private actors, and another in which entrepreneurial actors generate their own rules, persuading others to adopt them. Drawing on a wealth of empirical evidence spanning a century of environmental rule making, the book shows how the delegation of authority to private actors has played a small but consistent role in multilateral environmental agreements over the past fifty years, largely in the area of treaty implementation. This contrasts with entrepreneurial authority, where most private environmental rules have been created in the past two decades. The book traces how this dynamic and fast-growing form of private authority is becoming increasingly common in areas ranging from organic food to green building practices to sustainable tourism. It persuasively argues that the configuration of state preferences and the existing institutional landscape are paramount to explaining why private authority emerges and assumes the form that it does. In-depth cases on climate change provide evidence for the book's arguments. The book demonstrates that authority in world politics is diffused across multiple levels and diverse actors, and it offers a more complete picture of how private actors are helping to shape our response to today's most pressing environmental problems.


2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


Postcolonial studies, postmodern studies, even posthuman studies emerge, and intellectuals demand that social sciences be remade to address fundamentals of the human condition, from human rights to global environmental crises. Since these fields owe so much to American state sponsorship, is it easier to reimagine the human and the modern than to properly measure the pervasive American influence? Reconsidering American Power offers trenchant studies by renowned scholars who reassess the role of the social sciences in the construction and upkeep of the Pax Americana and the influence of Pax Americana on the social sciences. With the thematic image for this enterprise as the ‘fiery hunt’ for Ahab’s whale, the contributors pursue realities behind the theories, and reconsider the real origins and motives of their fields with an eye on what will deter or repurpose the ‘fiery hunts’ to come, by offering a critical insider’s view.


Author(s):  
Machiel Lamers ◽  
Jeroen Nawijn ◽  
Eke Eijgelaar

Over the last decades a substantial and growing societal and academic interest has emerged for the development of sustainable tourism. Scholars have highlighted the contribution of tourism to global environmental change and to local, detrimental social and environmental effects as well as to ways in which tourism contributes to nature conservation. Nevertheless the role of tourist consumers in driving sustainable tourism has remained unconvincing and inconsistent. This chapter reviews the constraints and opportunities of political consumerism for sustainable tourism. The discussion covers stronger pockets and a key weak pocket of political consumerism for sustainable tourism and also highlights inconsistencies in sustainable tourism consumption by drawing on a range of social theory arguments and possible solutions. The chapter concludes with an agenda for future research on this topic.


Biochar ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
Yongjie Wang ◽  
Huan Zhong

AbstractThe transformation of mercury (Hg) into the more toxic and bioaccumulative form methylmercury (MeHg) in soils and sediments can lead to the biomagnification of MeHg through the food chain, which poses ecological and health risks. In the last decade, biochar application, an in situ remediation technique, has been shown to be effective in mitigating the risks from Hg in soils and sediments. However, uncertainties associated with biochar use and its underlying mechanisms remain. Here, we summarize recent studies on the effects and advantages of biochar amendment related to Hg biogeochemistry and its bioavailability in soils and sediments and systematically analyze the progress made in understanding the underlying mechanisms responsible for reductions in Hg bioaccumulation. The existing literature indicates (1) that biochar application decreases the mobility of inorganic Hg in soils and sediments and (2) that biochar can reduce the bioavailability of MeHg and its accumulation in crops but has a complex effect on net MeHg production. In this review, two main mechanisms, a direct mechanism (e.g., Hg-biochar binding) and an indirect mechanism (e.g., biochar-impacted sulfur cycling and thus Hg-soil binding), that explain the reduction in Hg bioavailability by biochar amendment based on the interactions among biochar, soil and Hg under redox conditions are highlighted. Furthermore, the existing problems with the use of biochar to treat Hg-contaminated soils and sediments, such as the appropriate dose and the long-term effectiveness of biochar, are discussed. Further research involving laboratory tests and field applications is necessary to obtain a mechanistic understanding of the role of biochar in reducing Hg bioavailability in diverse soil types under varying redox conditions and to develop completely green and sustainable biochar-based functional materials for mitigating Hg-related health risks.


Sign in / Sign up

Export Citation Format

Share Document