scholarly journals Genetic Architecture of End-use Quality Traits in Soft White Winter Wheat

Author(s):  
Meriem Aoun ◽  
Arron H. Carter ◽  
Craig F. Morris ◽  
Alecia M. Kiszonas

Abstract Background:Genetic improvement of end-use quality is an important objective in wheat breeding programs to meet the requirements of grain markets, millers, and bakers. However, end-use quality phenotyping is expensive and laborious thus, testing is often delayed until advanced generations. To better understand the underlying genetic architecture of end-use quality traits, we investigated the phenotypic and genotypic structure of 14 end-use quality traits in 672 advanced soft white winter wheat breeding lines and cultivars adapted to the Pacific Northwest region of the United States.Results:This collection of germplasm had continuous distributions for the 14 end-use quality traits with industrially significant differences for all traits. The breeding lines and cultivars were genotyped using genotyping-by-sequencing and 40,518 SNP markers were used for association mapping (GWAS). The GWAS identified 178 marker-trait associations (MTAs) distributed across all wheat chromosomes. A total of 40 MTAs were positioned within genomic regions of previously discovered end-use quality genes/QTL. Among the identified MTAs, 12 markers had large effects and thus could be considered in the larger scheme of selecting and fixing favorable alleles in breeding for end-use quality in soft white wheat germplasm. We also identified 15 loci (two of them with large effects) that can be used for simultaneous breeding of more than a single end-use quality trait. The results highlight the complex nature of the genetic architecture of end‑use quality, and the challenges of simultaneously selecting favorable genotypes for a large number of traits. This study also illustrates that some end-use quality traits were mainly controlled by a larger number of small-effect loci and may be more amenable to alternate selection strategies such as genomic selection.Conclusions:In conclusion, a breeder may be faced with the dilemma of balancing genotypic selection in early generation(s) versus costly phenotyping later on.

2019 ◽  
Author(s):  
Sepehr Mohajeri Naraghi ◽  
Senay Simsek ◽  
Ajay Kumar ◽  
S.M. Hisam Al Rabbi ◽  
Mohammed S. Alamri ◽  
...  

AbstractImproving the end-use quality traits is one of the primary objectives in wheat breeding programs. In the current study, a population of 127 recombinant inbred lines (RILs) derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) was developed and used to identify quantitative trait loci (QTL) for 16 end-use quality traits in wheat. The phenotyping of these 16 traits was performed in nine environments in North Dakota, USA. The genotyping for the RIL population was conducted using the wheat Illumina iSelect 90K SNP assay. A high-density genetic linkage map consisting of 7,963 SNP markers identified a total of 76 additive QTL (A-QTL) and 73 digenic epistatic QTL (DE-QTL) associated with these traits. Overall, 12 stable major A-QTL and three stable DE-QTL were identified for these traits, suggesting that both A-QTL and DE-QTL played an important role in controlling end-use quality traits in wheat. The most significant A-QTL (AQ.MMLPT.ndsu.1B) was detected on chromosome 1B for mixograph middle line peak time. The AQ.MMLPT.ndsu.1B A-QTL was located very close to the position of the Glu-B1 gene encoding for a subunit of high molecular weight glutenin and explained up to 24.43% of phenotypic variation for mixograph MID line peak time. A total of 23 co-localized QTL loci were detected, suggesting the possibility of the simultaneous improvement of the end-use quality traits through selection procedures in wheat breeding programs. Overall, the information provided in this study could be used in marker-assisted selection to increase selection efficiency and to improve the end-use quality in wheat.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7276 ◽  
Author(s):  
Sai Mukund Ramakrishnan ◽  
Jagdeep Singh Sidhu ◽  
Shaukat Ali ◽  
Navjot Kaur ◽  
Jixiang Wu ◽  
...  

Bacterial leaf streak (BLS) caused by Xanthomonas campestris pv. translucens is one of the major bacterial diseases threatening wheat production in the United States Northern Great Plains (NGP) region. It is a sporadic but widespread wheat disease that can cause significant loss in grain yield and quality. Identification and characterization of genomic regions in wheat that confer resistance to BLS will help track resistance genes/QTLs in future wheat breeding. In this study, we evaluated a hard winter wheat association mapping panel (HWWAMP) containing 299 hard winter wheat lines from the US hard winter wheat growing region for their reactions to BLS. We observed a range of BLS responses among the lines, importantly, we identified ten genotypes that showed a resistant reaction both in greenhouse and field evaluation. ­Genome-wide association analysis with 15,990 SNPs was conducted using an exponentially compressed mixed linear model. Five genomic regions (p < 0.001) that regulate the resistance to BLS were identified on chromosomes 1AL, 1BS, 3AL, 4AL, and 7AS. The QTLs Q.bls.sdsu-1AL, Q.bls.sdsu-1BS, Q.bls.sdsu-3AL, Q.bls.sdsu-4AL, and Q.bls.sdsu-7AS explain a total of 42% of the variation. In silico analysis of sequences in the candidate regions on chromosomes 1AL, 1BS, 3AL, 4AL, and 7AS identified 10, 25, 22, eight, and nine genes, respectively with known plant defense-related functions. Comparative analysis with rice showed two syntenic regions in rice that harbor genes for bacterial leaf streak resistance. The ten BLS resistant genotypes and SNP markers linked to the QTLs identified in our study could facilitate breeding for BLS resistance in winter wheat.


2021 ◽  
Author(s):  
Meriem Aoun ◽  
Arron Carter ◽  
Yvonne A. Thompson ◽  
Brian Ward ◽  
Craig F. Morris

2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


2018 ◽  
Vol 9 ◽  
Author(s):  
Kendra L. Jernigan ◽  
Jayfred V. Godoy ◽  
Meng Huang ◽  
Yao Zhou ◽  
Craig F. Morris ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 368 ◽  
Author(s):  
Dennis Lozada ◽  
Arron Carter

Examining the architecture of traits through genomics is necessary to gain a better understanding of the genetic loci affecting important traits to facilitate improvement. Genomewide association study (GWAS) and genomic selection (GS) were implemented for grain yield, heading date, and plant height to gain insights into the genetic complexity of phenotypic stability of traits in a diverse population of US Pacific Northwest winter wheat. Analysis of variance using the Additive Main Effect and Multiplicative Interaction (AMMI) approach revealed significant genotype and genotype by environment interactions. GWAS identified 12 SNP markers distributed across 10 chromosomes affecting variation for both trait and phenotypic stability, indicating potential pleiotropic effects and signifying that similar genetic loci could be associated with different aspects of stability. The lack of stable and major effect loci affecting phenotypic variation supports the complexity of stability of traits. Accuracy of GS was low to moderate, between 0.14 and 0.66, indicating that phenotypic stability is under genetic control. The moderate to high correlation between trait and trait stability suggests the potential of simultaneous selection for trait and trait stability. Our results demonstrate the complex genetic architecture of trait stability and show the potential for improving stability in winter wheat using genomic-assisted approaches.


2013 ◽  
Vol 8 (3) ◽  
pp. 297-305
Author(s):  
Rita Armonienė ◽  
Kristina Jonavičienė ◽  
Vytautas Ruzgas ◽  
Gintaras Brazauskas

AbstractIn order to identify genes responsible for starch granule initiation during early development of wheat caryopsis, nine winter wheat breeding lines were studied. Two breeding lines, which are the most diverse in A-type granule size (26.85 µm versus 23.65 µm) were chosen for further differential gene expression analysis in developing caryopses at 10 and 15 days post-anthesis (DPA). cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis resulted in 384 transcript-derived fragments, out of which 18 were identified as being differentially expressed. Six differentially expressed genes, together with the six well-known starch biosynthesis genes, were chosen for semi-quantitative gene expression analysis in developing wheat caryopses at 10 and 15 DPA. This study provides genomic information on 18 genes differentially expressed at early stages of wheat caryopses development and reports on the identification of genes putatively involved in the production of large A-type granules. These genes are targets for further validation on their role in starch granule synthesis control and provide the basis for the development of DNA marker tools in winter wheat breeding for enhanced starch quality.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 669 ◽  
Author(s):  
Peter S. Kristensen ◽  
Just Jensen ◽  
Jeppe R. Andersen ◽  
Carlos Guzmán ◽  
Jihad Orabi ◽  
...  

Use of genetic markers and genomic prediction might improve genetic gain for quality traits in wheat breeding programs. Here, flour yield and Alveograph quality traits were inspected in 635 F6 winter wheat breeding lines from two breeding cycles. Genome-wide association studies revealed single nucleotide polymorphisms (SNPs) on chromosome 5D significantly associated with flour yield, Alveograph P (dough tenacity), and Alveograph W (dough strength). Additionally, SNPs on chromosome 1D were associated with Alveograph P and W, SNPs on chromosome 1B were associated with Alveograph P, and SNPs on chromosome 4A were associated with Alveograph L (dough extensibility). Predictive abilities based on genomic best linear unbiased prediction (GBLUP) models ranged from 0.50 for flour yield to 0.79 for Alveograph W based on a leave-one-out cross-validation strategy. Predictive abilities were negatively affected by smaller training set sizes, lower genetic relationship between lines in training and validation sets, and by genotype–environment (G×E) interactions. Bayesian Power Lasso models and genomic feature models resulted in similar or slightly improved predictions compared to GBLUP models. SNPs with the largest effects can be used for screening large numbers of lines in early generations in breeding programs to select lines that potentially have good quality traits. In later generations, genomic predictions might be used for a more accurate selection of high quality wheat lines.


1990 ◽  
Vol 70 (3) ◽  
pp. 629-637 ◽  
Author(s):  
CHARLES F. McGUIRE ◽  
LARRY G. BLACKWOOD

The United States Department of Agriculture (USDA) grading standards for wheat places hard red spring and hard red winter (Triticum aestivum L. em. Thell) wheat into separate classes. One important criterion for this designation is kernel type. Because of genotypes being released by plant breeders in recent years, distinction between these two classes is difficult for grain graders. As a consequence some people in the grain industry favor placing both of these wheat types into one class. One hazard of this action is that end use properties of these two wheats, according to some industrial firms, is class dependent. We studied quality characteristics of five hard red spring and seven hard red winter wheat cultivars grown at the same three Montana locations in 5 different years to evaluate this concept. Analysis of variance indicated quality differences between classes for all traits except flour yields, which were similar for the two classes. Flour ash content, farinograph absorption, peak time, stability time, valorimeter, grain protein content, bake absorption, mix time, and loaf volume were all significantly higher for spring than winter wheats. These values were still higher for spring than winter wheats except for test weight when wheat protein content was the co-variate. Both statistical treatments show that hard red spring wheat flour has higher water absorption percent, longer dough mixing requirements, longer dough stability times, and higher loaf volumes than hard red winter wheat flour.Key words: Bread wheat quality, loaf volume, grain protein content, protein quality


Sign in / Sign up

Export Citation Format

Share Document