scholarly journals Physiological and potentially pathogenic microbial flora in bats

Author(s):  
Maria Foti ◽  
Mariateresa Teresa Spena ◽  
Vittorio Fisichella ◽  
Antonietta Mascetti ◽  
Marco Colnaghi ◽  
...  

Abstract The study of bats has a significant interest from a systematic, zoogeographic, ecological and physiological point of view, but their possible role as potential carriers of pathogenic bacteria is little explored and very little research has been carried out on the European continent. The aim of this study is to investigate the culturable aerobic enteric, conjunctival and oral bacterial flora of bats living in southern Italy to determine the physiological bacterial microflora and to investigate the possible occurrence of pathogenic bacteria. Five hundred and sixty-seven samples were collected from 189 individuals of 4 species of bats (Myotis myotis, Myotis capaccinii, Miniopterus schreibersii and Rhinolophus hipposideros). The sampling was carried out in six areas of the territory of Sicily and Calabria (southern Italy). All samples were examined for Gram negative bacteria; conjunctival and oral swabs were also submitted to bacteriological examination for Gram positive bacteria. Four hundred thirteen Gram negative strains were isolated. Of these, 377 belonged to 17 different genera of the Enterobacteriaceae Group and 30 to 5 other Families. One hundred eighty three Gram positive strains were isolated. Of these, 73 belonged to Staphylococcaceae Family, 72 to Bacillaceae Family and 36 to 4 other Families. To the best of our knowledge, this is the first time that some of these genera have been isolated from bats. The results confirmed that bats play an important role in the ecology and circulation of potentially pathogenic bacteria not only for wild species but also for domestic animals and for humans.

2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2009 ◽  
Vol 55 (5) ◽  
pp. 627-632 ◽  
Author(s):  
Thomas Candela ◽  
Marie Moya ◽  
Michel Haustant ◽  
Agnès Fouet

Poly-γ-glutamate has been described in many Gram-positive organisms. When anchored to the surface, it is a capsule and as such a virulence factor. Based on sequence similarities, few Gram-negative organisms have been suggested to synthesize poly-γ-glutamate. For the first time, a Gram-negative bacterium, Fusobacterium nucleatum , is shown to produce and secrete poly-γ-glutamate. Putative poly-γ-glutamate-synthesizing genes from Gram-negative organisms have been compared with their Gram-positive homologs by in silico analysis, i.e., gene sequence and phylogenetic analysis. Clusters of three instead of four genes were highlighted by our screen. The products of the first two genes display similarity with their Gram-positive equivalents, yet the sequences from the Gram-negative organisms can be distinguished from those of the Gram-positives. Interestingly, the sequence of the predicted product of the third gene is conserved among Gram-negative bacteria but displays no similarity to that of either the third or fourth gene of the Gram-positive operons. It is suggested that, like for Gram-positive bacteria, poly-γ-glutamate has a role in virulence for pathogens and one in survival for other Gram-negative bacteria.


2011 ◽  
Vol 60 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Svetlana A. Ermolaeva ◽  
Alexander F. Varfolomeev ◽  
Marina Yu. Chernukha ◽  
Dmitry S. Yurov ◽  
Mikhail M. Vasiliev ◽  
...  

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


1914 ◽  
Vol 19 (5) ◽  
pp. 501-512 ◽  
Author(s):  
Charles Krumwiede ◽  
Josephine S. Pratt

Several green dyes show a marked selective action for members of the typhoid-paratyphoid-colon group. This can be used for the enrichment of typhoid and paratyphoid bacilli present in feces. Forty dyes were tested with thirty strains covering all types of pathogenic bacteria. In general the dyes restrained the growth of the Gram-positive bacteria but had no effect on the growth of the Gram-negative group.


2018 ◽  
Vol 29 ◽  
pp. 70-77 ◽  
Author(s):  
Anjana Devkota ◽  
Ritu Kumari Das

Antibacterial activities of Xanthium strumarium L. (Asteraceae) was carried out in laboratory. Distilled water and methanol extracts of the leaves of plant was prepared. The antibacterial activity was studied against six pathogenic bacteria, three gram negative: Klebsiella pneumoniae (ATCC 15380), Proteus mirabilis (ATCC 49132), Escherichia coli (ATCC 25922) and three gram positive: Bacillus subtilis (ATCC 6633), Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 25932) at different concentrations (50 mg/ml, 100 mg/ml, 150 mg/ml, 200 mg/ ml, 250 mg/ml) of leaf extracts of X. strumurium. The phytochemical screening depicted the presence of terpenoids, saponins, flavonoids, tannins and alkaloids. The antibacterial activity of extracts was determined by disc diffusion method and zone of inhibition (ZOI) was measured. Gram negative bacteria was found more resistant than gram positive bacteria. The most susceptible bacterium was S. aureus while the most resistant bacterium was E. coli. Methanolic extract was found more effective than distilled water. These findings suggest that extracts obtained from leaves of X. strumurium possess biobactericidal potential, which can suitably be exploited for making antibacterial drugs.J. Nat. Hist. Mus. Vol. 29, 2015, Page: 70-77


2021 ◽  
Author(s):  
Maged. M Mahmoud ◽  
Ahmed M. Al-Hejin ◽  
Turki S Abujaml ◽  
S Abd-Elmaksoud ◽  
Salem M. El-Hamidy ◽  
...  

Abstract For the first time, this study was carried out to investigate and evaluate the relative antibacterial activity of three different Nk-lysin peptides from human, chicken, and bovine activity compared to Gram-negative and Gram-positive bacteria as well as antiviral activity against rotavirus (strain SA-11) and finally mechanisms of action optionality. This report is the first of its kind that investigates the increased antimicrobial ability of (Nk-lysin + AgNPs) and (Nk-lysin + human IL-2) combinations against S. typhi activity by carrying out direct comparison under similar experimental settings. Our results showed that gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. It was shown in our findings that there was equal potentiality in mixture (Nk-lysin + AgNPs) and (Nk-lysin + human IL-2) for preventing the growth of S. typhi, however, when added together, there was minor increase in the level of action. In our study, the TOHO-1 gene was absent in treated bacteria. Following treatment with Nk-lysin peptides, the beta-lactamases genes (CTX-M-1, M-8, and M-9) were not found in any bacterial strains. The examination did not find any of the plasmid mediated quinolone resistance genes in the bacterial strains as a response to NK-lysin treatment. Nonetheless, no study has been carried out in the past that characterized the antiviral activity of bovine, human and chicken Nk-lysin peptides. Hence, this is the foremost study on the enhanced antimicrobial activity of human, bovine and chicken Nk-lysin peptides against Rotavirus (strain SA-11). The findings of the study demonstrated that the powerful antiviral activities were exhibited by Nk-lysin peptides against Rotavirus (strain SA-11). Based on the comparison between these peptides, it can be concluded that there is an evident potent antiviral activity of bovine Nk-lysin against Rotavirus (strain SA-11) as it restrains infection by up to 90%. However, growth was restricted by 80% by chicken Nk-lysin and by 50% by the human peptide.


2021 ◽  
Vol 12 (2) ◽  
pp. 1824-1834

Secondary metabolites from the shoots and roots of three Rumex species collected from three different habitats were investigated (Rumex dentatus collected from cultivated land, R. pictus collected from the coastal desert and R. vesicarius collected from the inland desert) and tested for antioxidant activity as well as for anti-microbial activity against some human pathogenic bacteria. The present study indicated that the quantitative analysis of shoot and root extracts of three Rumex spp. were found to be rich in tannins and phenolics composition. The aerial parts of the three plants exhibited the highest significant values compared to the root parts. The MeOH extracts of Rumex species showed adequate antioxidant activity, wherein the IC50 values of the MeOH from the cultivated sample was 41.61 and 31.31 mg mL-1, coastal samples were 34.99 and 23.99 mg mL-1, while the sample of inland showed IC50 value of 41.59 and 31.67 mg mL-1, for root and shoot, respectively. Furthermore, using a filter paper disc assay, the MeOH extracts of the three Rumex species showed a substantial anti-microbial inhibitory effect on the growth of 10 pathogenic bacteria. According to sensitivity, the tested organisms could be sequenced as following: E. coli < K. pneumoniae ˂ S. typhi < P. aeruginosa for Gram-negative bacteria and B. subtilis < S. pneumoniae ˂ L. monocytoyenes < S. epidermis < S. aureus < B. cereus for Gram-positive bacteria. In addition, the antibacterial performance of R. dentatus root and R. vesicarius shoot MeOH extract is 100% broad spectrum against Gram-negative bacteria. A shoot of R. dentatus and R. pictus MeOH extract against Gram-positive bacteria is 83.3% broad spectrum. A further study is recommended for more characterization of the major compounds and assesses their efficiency and biosafety.


2019 ◽  
Vol 55 (15) ◽  
pp. 2206-2209 ◽  
Author(s):  
Yu Qin ◽  
Lin-Lin Chen ◽  
Wei Pu ◽  
Peng Liu ◽  
Shi-Xi Liu ◽  
...  

A hydrogel was directly assembled from a Cu-MOP by a facile procedure without adding any polymers for the first time, and it exhibited excellent antibacterial activity towards both Gram-negative and Gram-positive bacteria.


2009 ◽  
Vol 3 (1) ◽  
pp. 15-20
Author(s):  
Saeed Sahib Allawi ◽  
Jassim Mohammad Auda ◽  
Hiba Qasim Hameed ◽  
Tagreed Ibraheem Ali

Four extracts of Curcuma longa rhizomes ( commonly known as turmeric widly used as spice and coloring agent and known for its medical properties) were evaluated for their anti- bacterial action against pathogenic bacteria of gram-negative (Escherichia coli, Salmonella typhimurium ) and gram- positive (Staphylococcus aureus, Bacillus cereus) comparing with antibiotics (gentamycin, ampicillin and erythromycin). Essential oil which was extracted from turmeric found to be most active against pathogenic bacteria in comparison with other extracts (water, chloroform and methanol extract). Using 40 microgram/disc of essential oil of turmeric as a minimum inhibitory concentration posses significant activity on pathogenic gram-negative and gram- positive bacteria


Author(s):  
Ranganathan Kapilan

Wide range of plant extracts are used for medicinal purposes as they are very cheap, efficient, harmless and do not cause any side effects. Spices are parts of different plants and they add special aroma and taste to the food preparations. The aim of the study was to determine the antimicrobial activity of some important naturally grown spices against gram positive and gram negative pathogenic bacteria. Antibacterial activity of the spices was tested against gram positive bacteria Bacillus pumilus, Bacillus cereus and Staphylococcus aureus and gram negative bacteria Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa using aqueous, ethanolic, methanolic and liquid nutrient extracts. Among all the extracts tested alcoholic extracts of Cardamom (Elettaria cardamom), clove (Eugenia caryophyllus) and lemongrass (Cymbopogoncitratus) showed maximum antimicrobial activity against gram negative bacteria while alcoholic extract of Cardamom (Elettaria cardamom) and lemongrass (Cymbopogoncitratus) showed maximum activity against gram positive bacteria. All the spices tested in this study proved that they have antibacterial activity and the maximum activity index (1.39) was exhibited by the ethanol extract of cardamom against E.coli.


Sign in / Sign up

Export Citation Format

Share Document