scholarly journals Clinical Analysis on Diagnostic Accuracy of Bosch Vivalytic SARS- CoV-2 Point-of-Care Test and Evaluation of Cycle Threshold at Admission for COVID-19 Risk Assessment

Author(s):  
Lukas Andreas Heger ◽  
Nils Elsen ◽  
Marina Rieder ◽  
Nadine Gauchel ◽  
Urte Sommerwerck ◽  
...  

Abstract Background Point-of-care (POC) polymerase chain reaction (PCR) tests have the ability to improve testing efficiency in the Coronavirus disease 2019 (COVID-19) pandemic. However, real-world data on POC tests is scarce.Objective To evaluate the efficiency of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) POC test in a clinical setting and examine the prognostic value of on admission cycle threshold (CT) on length of hospital stay (LOS) in COVID-19 patients.Methods Patients hospitalised between January and May 2021 were included in this prospective cohort study. Patients’ nasopharyngeal swabs were tested for SARS-CoV-2 with Allplex™2019-nCoV (Seegene Inc.) real-time (RT) PCR assay and novel POC test (Bosch Vivalytic SARS-CoV-2 [Bosch]) as well as the SARS-CoV-2 Rapid Antigen Test (Roche) accordingly. Clinical sensitivity and specificity as well as inter- and intra-assay variability were analysed. Results 120 patients met the inclusion criteria with 46 (38%) having definite COVID-19 diagnose by RT-PCR. Bosch Vivalytic SARS-CoV-2 POC had a sensitivity of 88% and specificity of 96%. The inter- and intra- assay variability was below 15%. CT Value at baseline was lower in patients with LOS ≥10 days when compared to patients with LOS <10 days (27.82 (±4.648) vs. 36.2 (25.9 - 39.18); p=0.0191). There was a negative correlation of CT at admission and LOS (r[44]s= -.31; p=0.038)Conclusion Our data indicate that POC testing with Bosch Vivalytic SARS-CoV-2 is a valid strategy to identify COVID-19 patients and decrease turnaround time to definite COVID-19 diagnosis. Also our data suggests at admission CT as promising marker for length of hospital stay and possibly severity of disease in COVID-19 patients.

2021 ◽  
Author(s):  
Pratiksha Chheda ◽  
Dama Tavisha ◽  
Bhalerao Rahul ◽  
Bagwan Jamir ◽  
Bhat Devdatta ◽  
...  

Abstract Rapid diagnostic tests are of great importance in hospital settings during the current outbreak of SARS-CoV-2. The clinical patient management and spread of infection is critically dependent on molecular assays with shortest possible turn-around time. Here we report performance of a point of care Abbott ID NOW COVID-19 assay in comparison to routinely used real-time RT-PCR assay on 205 clinical specimens. Overall agreement of ID NOW was found to be 93.7% with positive percent agreement (PPA) of 91.8% and negative percent agreement (NPA) of 95.4%. Based on our findings, low turnaround time, minimal infrastructure need and ease of performing the assay, Abbott ID NOW COVID-19 assay can be considered as a point of care test in hospital settings.


2021 ◽  
Vol 8 (7) ◽  
pp. 98
Author(s):  
Ernst Emmanuel Etienne ◽  
Bharath Babu Nunna ◽  
Niladri Talukder ◽  
Yudong Wang ◽  
Eon Soo Lee

COVID-19, also known as SARS-CoV-2 is a novel, respiratory virus currently plaguing humanity. Genetically, at its core, it is a single-strand positive-sense RNA virus. It is a beta-type Coronavirus and is distinct in its structure and binding mechanism compared to other types of coronaviruses. Testing for the virus remains a challenge due to the small market available for at-home detection. Currently, there are three main types of tests for biomarker detection: viral, antigen and antibody. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) remains the gold standard for viral testing. However, the lack of quantitative detection and turnaround time for results are drawbacks. This manuscript focuses on recent advances in COVID-19 detection that have lower limits of detection and faster response times than RT-PCR testing. The advancements in sensing platforms have amplified the detection levels and provided real-time results for SARS-CoV-2 spike protein detection with limits as low as 1 fg/mL in the Graphene Field Effect Transistor (FET) sensor. Additionally, using multiple biomarkers, detection levels can achieve a specificity and sensitivity level comparable to that of PCR testing. Proper biomarker selection coupled with nano sensing detection platforms are key in the widespread use of Point of Care (POC) diagnosis in COVID-19 detection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Redecke ◽  
Kazuki Tawaratsumida ◽  
Erin T. Larragoite ◽  
Elizabeth S. C. P. Williams ◽  
Vicente Planelles ◽  
...  

AbstractDiagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as ‘NanoSpot.ai’, is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.


2016 ◽  
Vol 36 (4) ◽  
pp. 619-623 ◽  
Author(s):  
M. J. Bruins ◽  
M. J. Egbers ◽  
T. M. Israel ◽  
S. H. A. Diepeveen ◽  
M. J. H. M. Wolfhagen

2021 ◽  
Author(s):  
Jessica Caffry ◽  
Matthew Selby ◽  
Katie Barr ◽  
George Morgan ◽  
David McGurk ◽  
...  

Background: Accurate, affordable, and rapid point-of-care (PoC) diagnostics are critical to the global control and management of the COVID-19 pandemic. The current standard for accurate diagnosis of SARS-CoV-2 is laboratory-based reverse transcription polymerase chain reaction (RT-PCR). Here, we report a preliminary prospective performance evaluation of the QuantuMDx Q-POC SARS CoV-2 RT-PCR assay. Methods: Between November 2020 and March 2021, we obtained 49 longitudinal nose and throat swabs from 29 individuals hospitalised with RT-PCR confirmed COVID-19 at St Georges' NHS Foundation Trust, London (UK). In addition, we obtained 101 mid nasal swabs from healthy volunteers in June 2021. We then used these samples to evaluate the Q-POC SARS-CoV-2 RT-PCR assay. The primary analysis was to compare the sensitivity and specificity of the Q-POC test against a reference laboratory-based RT-PCR assay. Results: The overall sensitivity of the Q-POC test compared with the reference test was 96.88% (83.78%- 99.92% CI) for a cycle threshold (Ct) cut-off value for the reference test of 35 and 80.00% (64.35% to 90.95% CI) without altering the reference test's Ct cut-off value of 40. Conclusions: The Q-POC test is a sensitive, specific and rapid point-of-care test for SARS-CoV-2 at a reference Ct cut-off value of 35. The Q-POC test provides an accurate and afforda-ble option for RT-PCR at point-of-care without the need for sample pre-processing and laboratory handling. The Q-POC test would enable rapid diagnosis and clinical triage in acute care and other settings.


2021 ◽  
Author(s):  
Jesse Gitaka ◽  
Eva Muthamia ◽  
Samuel Mbugua ◽  
Mary Mungai ◽  
Gama Bandawe ◽  
...  

Abstract Background: The COVID-19 pandemic has resulted in a need for rapid identification of infectious cases. Testing barriers have prohibited adequate screening for SARS COV2, resulting in significant delays in treatment provision and commencement of outbreak control measures. This study aimed to generate evidence on the performance and implementation characteristics of the BD Veritor rapid antigen test as compared to the gold standard test for diagnosis of SARS COV2 in Kenya. Methods: This was a field test performance evaluation in symptomatic and asymptomatic adults undergoing testing for SARS COV2. Recruited participants were classified as SARS-CoV2-positive based on the locally implemented gold standard reverse transcription polymerase chain reaction (RT-PCR) test performed on nasopharyngeal swabs. 272 antigen tests were performed with simultaneous gold standard testing, allowing us to estimate sensitivity, specificity, positive and negative predictive values for the BD Veritor rapid antigen test platform. Implementation characteristics were assessed using the Consolidated Framework for Implementation Research for feasibility, acceptability, turn-around time, and ease-of-use metrics. Results and Discussion: We enrolled 97 PCR negative symptomatic and 128 PCR negative asymptomatic, and 28 PCR positive symptomatic and 19 PCR positive asymptomatic participants. Compared to the gold standard, the sensitivity of the BD Veritor antigen test was 94% (95% confidence interval [CI] 86.6 to 100.0) while the specificity was 98% (95% confidence interval [CI] 96 to 100). The sensitivity of BD Veritor antigen test was higher among symptomatic (100%) compared to asymptomatic (84%) participants, although this difference was not statistically significant. There was also a lack of association between cycle threshold value and sensitivity of BD Veritor test. The BD Veritor test had quick turnaround time and minimal resource requirements, and laboratory personnel conducting testing felt that it was easier to use than the gold standard RT-PCR. Conclusion: The BD Veritor rapid antigen test exhibited excellent sensitivity and specificity when used to detect SARS-CoV-2 infection among both symptomatic and asymptomatic individuals in varied population settings in Kenya. It was feasible to implement and easy to use, with rapid turnaround time.


2017 ◽  
Vol 04 (02) ◽  
pp. 085-090
Author(s):  
Sonia Bansal ◽  
Rohini Surve ◽  
Madhusudhan Rao ◽  
Bhadri Narayan ◽  
Mariamma Philip ◽  
...  

Abstract Background: Coagulopathy in isolated traumatic brain injury (TBI) is well-known, and studies have found an association between coagulopathy and unfavourable outcomes. This study was conducted to determine the incidence and causes of coagulopathy in patients with TBI undergoing craniotomy and its effect on post-operative outcome. Materials and Methods: The data collected was demographics, computed tomography diagnosis, post-resuscitation Glasgow Coma Scale (GCS) score, pre- and post-operative platelet count, liver function tests, intraoperative blood loss and transfusion, fluids infused and incidence of redo surgery. Point of care (Coaguchek XS) monitor was used to obtain prothrombin time and international normalised ratio (INR) at 24 h and 72 h of injury. Coagulopathy was defined as INR ≥1.3 and thrombocytopenia as platelet count ≤100,000/mcL. Outcome measures assessed were the length of hospital stay, GCS at discharge and in-hospital mortality. Results: In 166 patients, the average pre-operative GCS was 8.8 ± 3.6. The incidence of coagulopathy was 42.8% and increased to 55.6% on the 3rd day, and thrombocytopenia from 3.5% in the first 24 h increased to 14.7% at 72 h. Patients with coagulopathy had lower pre-operative admission GCS (median 7 vs. 9, P = 0.03), greater intraoperative blood loss and received more intravenous fluids. There was no difference in the incidence of post-operative haematomas, length of hospital stay and GCS at discharge or mortality. Conclusion: In patients with TBI, the incidence of coagulopathy increased at the end of 72 h. In this study, there was no difference in outcomes in patients who underwent craniotomy with deranged coagulation.


2018 ◽  
Vol 25 (4) ◽  
pp. 1606-1617
Author(s):  
Eliona Gkika ◽  
Anna Psaroulaki ◽  
Yannis Tselentis ◽  
Emmanouil Angelakis ◽  
Vassilis S Kouikoglou

This retrospective study investigates the potential benefits from the introduction of point-of-care tests for rapid diagnosis of infectious diseases. We analysed a sample of 441 hospitalized patients who had received a final diagnosis related to 18 pathogenic agents. These pathogens were mostly detected by standard tests but were also detectable by point-of-care testing. The length of hospital stay was partitioned into pre- and post-laboratory diagnosis stages. Regression analysis and elementary queueing theory were applied to estimate the impact of quick diagnosis on the mean length of stay and the utilization of healthcare resources. The analysis suggests that eliminating the pre-diagnosis times through point-of-care testing could shorten the mean length of hospital stay for infectious diseases by up to 34 per cent and result in an equal reduction in bed occupancy and other resources. Regression and other more sophisticated models can aid the financing decision-making of pilot point-of-care laboratories in healthcare systems.


2020 ◽  
Vol 9 (5) ◽  
pp. 1515 ◽  
Author(s):  
Matteo Riccò ◽  
Pietro Ferraro ◽  
Giovanni Gualerzi ◽  
Silvia Ranzieri ◽  
Brandon Michael Henry ◽  
...  

SARS-CoV-2 is responsible for a highly contagious infection, known as COVID-19. SARS-CoV-2 was discovered in late December 2019 and, since then, has become a global pandemic. Timely and accurate COVID-19 laboratory testing is an essential step in the management of the COVID-19 outbreak. To date, assays based on the reverse-transcription polymerase chain reaction (RT-PCR) in respiratory samples are the gold standard for COVID-19 diagnosis. Unfortunately, RT-PCR has several practical limitations. Consequently, alternative diagnostic methods are urgently required, both for alleviating the pressure on laboratories and healthcare facilities and for expanding testing capacity to enable large-scale screening and ensure a timely therapeutic intervention. To date, few studies have been conducted concerning the potential utilization of rapid testing for COVID-19, with some conflicting results. Therefore, the present systematic review and meta-analysis was undertaken to explore the feasibility of rapid diagnostic tests in the management of the COVID-19 outbreak. Based on ten studies, we computed a pooled sensitivity of 64.8% (95%CI 54.5–74.0), and specificity of 98.0% (95%CI 95.8–99.0), with high heterogeneity and risk of reporting bias. We can conclude that: (1) rapid diagnostic tests for COVID-19 are necessary, but should be adequately sensitive and specific; (2) few studies have been carried out to date; (3) the studies included are characterized by low numbers and low sample power, and (4) in light of these results, the use of available tests is currently questionable for clinical purposes and cannot substitute other more reliable molecular tests, such as assays based on RT-PCR.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chishimba Mubanga ◽  
Kabemba E. Mwape ◽  
Isaac K. Phiri ◽  
Chiara Trevisan ◽  
Mwemezi Kabululu ◽  
...  

Abstract Background Diagnostic test evaluation includes measures of performance and assessment of operational characteristics. The latter focuses on end-user understanding of instructions to perform the test, ease of use, test turnaround time and ease of result interpretation. This study aimed to assess user comprehension of training for and ease of use of a Taenia solium point of care test (TS POC) evaluated in a community and hospital setting in Zambia and Tanzania, respectively. Methods The TS POC is a three-step in-house-produced rapid diagnostic test (RDT) for the simultaneous detection of taeniosis (TST) and cysticercosis (TSCC) antibodies. Data collected by administering questionnaires to 29 end-users and from the main evaluation database was analyzed quantitatively. Results End-users (28/29, 97%) perceived that the training they received for performing the test was sufficient. They performed 4080 tests, of which 80 were invalid. The community-based study and TST tests had higher invalid rates. The overall result interpretation was within the acceptable range of RDTs with an overall disagreement between readers of 3.3%. The Kappa coefficient of agreement was 85 and 82% for TSCC and TST, respectively. There was more disagreement among readers in the community-based study. Conclusion End-users rated the TS POC kit moderate in terms of ease of use citing long test turnaround time and difficulties in using the blood transfer device. Overall, the operational performance of the TS POC kit and end-users was within the established acceptable performance range.


Sign in / Sign up

Export Citation Format

Share Document