scholarly journals Utilizing Inter-Subject Variability to Assess Performance and Brain Activity During Complex Task Learning

Author(s):  
Pratusha Reddy ◽  
Patricia A Shewokis ◽  
Kurtulus Izzetoglu

Abstract With tasks becoming more mentally focused and operators being required to conduct multiple tasks simultaneously, it is important to not only acquire direct measurements from the brain, but also account for changes in performance and brain activity as a function of intersubject variability and task demands. Such methodology is particularly important when evaluating skill acquisition and transfer during training on a complex and ecologically valid task. To evaluate the aforementioned factors, we implemented a search and surveillance task (scanning an assigned area and identifying targets) using a high-fidelity Unmanned Aerial System operator training simulator, acquired brain activity changes via a portable functional near infrared spectroscopy (fNIRS) sensor array, and had novice participants (N = 13) undergo three sessions of easy difficulty followed by two harder difficulty sessions. Behavioral performance results indicated no significant change in scan or target find performance across easy sessions when intersubject variability was not accounted for. However, accounting for intersubject variability indicated that some individuals improved their scan performance, and they deteriorated their target find performance (Attention-focused group), while others deteriorated their scan performance, and they improved their target find performance (Accuracy-focused group). fNIRS results displayed that both groups exhibited a decrease in brain activity across easy sessions within the left dorsolateral prefrontal cortex (LDLPFC) and right anterior medial PFC (RAMPFC), while activity in left anterior medial prefrontal cortex (LAMPFC) increased in the Attention-focused group and decreased in the Accuracy-focused group. In both groups, transitioning to hard sessions resulted in a decrease in performance. The Attention-focused group displayed an increase in brain activity within LDLPFC, RAMPFC and LAMPFC, while the Accuracy-focused group displayed an increase in brain activity within LDLPFC, no change within RAMPFC and a decrease within LAMPFC. These results suggest that the Attention-focused group was able to acquire and transfer the skills needed to efficiently complete the scan task, while remaining engaged in a target find task. Alternatively, the Accuracy-focused group was engaged only on acquiring the skills needed to efficiently complete the target find task. In conclusion, these results suggest that utilizing intersubject variability as relevant information rather than noise improves assessments of skill acquisition and transfer during training on a complex task.

2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


Author(s):  
Paola Pinti ◽  
Andrea Devoto ◽  
Isobel Greenhalgh ◽  
Ilias Tachtsidis ◽  
Paul W Burgess ◽  
...  

Abstract Anterior prefrontal cortex (PFC, Brodmann area 10) activations are often, but not always, found in neuroimaging studies investigating deception, and the precise role of this area remains unclear. To explore the role of the PFC in face-to-face deception, we invited pairs of participants to play a card game involving lying and lie detection while we used functional near infrared spectroscopy (fNIRS) to record brain activity in the PFC. Participants could win points for successfully lying about the value of their cards or for detecting lies. We contrasted patterns of brain activation when the participants either told the truth or lied, when they were either forced into this or did so voluntarily and when they either succeeded or failed to detect a lie. Activation in the anterior PFC was found in both lie production and detection, unrelated to reward. Analysis of cross-brain activation patterns between participants identified areas of the PFC where the lead player’s brain activity synchronized their partner’s later brain activity. These results suggest that during situations that involve close interpersonal interaction, the anterior PFC supports processing widely involved in deception, possibly relating to the demands of monitoring one’s own and other people’s behaviour.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yan He ◽  
Yinying Hu ◽  
Yaxi Yang ◽  
Defeng Li ◽  
Yi Hu

Recent neuroimaging research has suggested that unequal cognitive efforts exist between interpreting from language 1 (L1) to language 2 (L2) compared with interpreting from L2 to L1. However, the neural substrates that underlie this directionality effect are not yet well understood. Whether directionality is modulated by interpreting expertise also remains unknown. In this study, we recruited two groups of Mandarin (L1)/English (L2) bilingual speakers with varying levels of interpreting expertise and asked them to perform interpreting and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. The interpreting-related neuroimaging data was normalized by using both L1 and L2 reading tasks, to control the function of reading and vocalization respectively. Our findings revealed the directionality effect in both groups, with forward interpreting (from L1 to L2) produced more pronounced brain activity, when normalized for reading. We also found that directionality was modulated by interpreting expertise in both normalizations. For the group with relatively high expertise, the activated brain regions included the right Broca’s area and the left premotor and supplementary motor cortex; whereas for the group with relatively low expertise, the activated brain areas covered the superior temporal gyrus, the dorsolateral prefrontal cortex (DLPFC), the Broca’s area, and visual area 3 in the right hemisphere. These findings indicated that interpreting expertise modulated brain activation, possibly because of more developed cognitive skills associated with executive functions in experienced interpreters.


2021 ◽  
Vol 13 (3) ◽  
pp. 12
Author(s):  
Nobuki Watanabe

Executive function (EF) development is remarkable in early childhood. EF is an ability that provides a foundation for future success; accordingly, supporting children during their early childhood is crucial. So far, there have been many findings on EF in early childhood based on behavioral observation. This exploratory case study examines the measurement of prefrontal cortex activity during the performance of EF tasks using functional near-infrared spectroscopy (fNIRS). This study aims to explore the following hypothesis. (1) The prefrontal cortex during early childhood becomes more active as a task becomes more difficult. (2) However, brain activity decreases and stabilizes as time progresses. (3) The evaluation can be easily measured with two-channel fNIRS. Experimental results showed that the preschooler and the child in lower elementary school displayed high levels of brain activity in the order of increasing difficulty in terms of behavioral indicators. Moreover, the preschooler showed higher levels of reaction than the child in lower elementary school. This result is useful and will broaden the perspectives of scholars in the fields of psychology, pedagogy, and neuroscience, those involved in child support.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atsumichi Tachibana ◽  
J. Adam Noah ◽  
Yumie Ono ◽  
Daisuke Taguchi ◽  
Shuichi Ueda

Abstract Understanding how the brain modulates improvisation has been the focus of numerous studies in recent years. Models have suggested regulation of activity between default mode and executive control networks play a role in improvisational execution. Several studies comparing formulaic to improvised sequences support this framework and document increases in activity in medial frontal lobe with decreased activity in the dorsolateral prefrontal cortex (DLPFC). These patterns can be influenced through training and neural responses may differ between in beginner and expert musicians. Our goal was to test the generalizability of this framework and determine similarity in neural activity in the prefrontal cortex during improvisation. Twenty guitarists performed improvised and formulaic sequences in a blues rock format while brain activity was recorded using functional near-infrared spectroscopy. Results indicate similar modulation in DLPFC as seen previously. Specific decreases of activity from left DLPFC in the end compared to beginning or middle of improvised sequences were also found. Despite the range of skills of participants, we also found significant correlation between subjective feelings of improvisational performance and modulation in left DLPFC. Processing of subjective feelings regardless of skill may contribute to neural modulation and may be a factor in understanding neural activity during improvisation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hannah Weibley ◽  
Mina Di Filippo ◽  
Xinran Liu ◽  
Lillian Lazenby ◽  
Jackson Goscha ◽  
...  

Functional near-infrared spectroscopy (fNIRS)is a brain-imaging technology used to reveal brain activity by measuring blood oxygenation. Using fNIRS we measured activity in the left prefrontal lobe of 8–14 month-old infants as they crawled or were pushed in a stroller and as they were given a passive attention task or an active executive function (EF) task. For each task, we measured peak total hemoglobin concentration and peak Oxy relative to baseline. Results revealed differences in peak Oxy levels for crawling vs. strolling and between the EF and passive cognitive tasks, with total hemoglobin greater for the EF task than the passive attention task. These results support the theoretical view that both active locomotion and EF engage the prefrontal cortex (PFC) during early development.


2021 ◽  
Vol 11 (7) ◽  
pp. 937
Author(s):  
Kurtulus Izzetoglu ◽  
Mehmet Emin Aksoy ◽  
Atahan Agrali ◽  
Dilek Kitapcioglu ◽  
Mete Gungor ◽  
...  

Robot-assisted surgery systems are a recent breakthrough in minimally invasive surgeries, offering numerous benefits to both patients and surgeons including, but not limited to, greater visualization of the operation site, greater precision during operation and shorter hospitalization times. Training on robot-assisted surgery (RAS) systems begins with the use of high-fidelity simulators. Hence, the increasing demand of employing RAS systems has led to a rise in using RAS simulators to train medical doctors. The aim of this study was to investigate the brain activity changes elicited during the skill acquisition of resident surgeons by measuring hemodynamic changes from the prefrontal cortex area via a neuroimaging sensor, namely, functional near-infrared spectroscopy (fNIRS). Twenty-four participants, who are resident medical doctors affiliated with different surgery departments, underwent an RAS simulator training during this study and completed the sponge suturing tasks at three different difficulty levels in two consecutive sessions/blocks. The results reveal that cortical oxygenation changes in the prefrontal cortex were significantly lower during the second training session (Block 2) compared to the initial training session (Block 1) (p < 0.05).


Author(s):  
Kevin Cyle Phillips ◽  
Derek Verbrigghe ◽  
Alex Gabe ◽  
Brittany Jauquet ◽  
Claire Eischer ◽  
...  

The purpose of this study was to examine prefrontal cortex (PFC) activation, neuromuscular function, and perceptual measures in response to a fatiguing task, following thermal alterations of an exercising arm. Nineteen healthy adults completed three experimental sessions. At baseline, participants performed maximum voluntary isometric contractions (MVIC) of the elbow flexors. Next, participants submerged their right arm in a water bath for 15 min. Cold (C), neutral (N), and hot (H) water temperatures were maintained at 8, 33, and 44 °C, respectively. Following water immersion, participants performed an isometric elbow flexion contraction, at 20% of their MVIC, for 5 min. Ratings of perceived exertion (RPE), muscular discomfort, and task demands were assessed. Functional near-infrared spectroscopy was used to measure activation (oxygenation) of the PFC during the fatiguing task. Reductions in MVIC torque at the end of the fatiguing task were greater for the H (25.7 ± 8.4%) and N (22.2 ± 9.6%) conditions, compared to the C condition (17.5 ± 8.9%, p < 0.05). The increase in oxygenation of the PFC was greater for the H (13.3 ± 4.9 μmol/L) and N (12.4 ± 4.4 μmol/L) conditions, compared to the C condition (10.3 ± 3.8 μmol/L, p < 0.001) at the end of the fatiguing task. The increase in RPE, muscular discomfort, and task demands were greater in the H condition compared to the N and C conditions (p < 0.01). These results indicate that precooling an exercising arm attenuates the rise in PFC activation, muscle fatigue, and psychological rating during a fatiguing task.


Author(s):  
Angelica M. Tinga ◽  
Maria-Alena Clim ◽  
Tycho T. de Back ◽  
Max M. Louwerse

AbstractFunctional near-infrared spectroscopy (fNIRS) is a promising technique for non-invasively assessing cortical brain activity during learning. This technique is safe, portable, and, compared to other imaging techniques, relatively robust to head motion, ocular and muscular artifacts and environmental noise. Moreover, the spatial resolution of fNIRS is superior to electroencephalography (EEG), a more commonly applied technique for measuring brain activity non-invasively during learning. Outcomes from fNIRS measures during learning might therefore be both sensitive to learning and to feedback on learning, in a different way than EEG. However, few studies have examined fNIRS outcomes in learning and no study to date additionally examined the effects of feedback. To address this apparent gap in the literature, the current study examined prefrontal cortex activity measured through fNIRS during visuomotor learning and how this measure is affected by task feedback. Activity in the prefrontal cortex decreased over the course of learning while being unaffected by task feedback. The findings demonstrate that fNIRS in the prefrontal cortex is valuable for assessing visuomotor learning and that this measure is robust to task feedback. The current study highlights the potential of fNIRS in assessing learning even under different task feedback conditions.


2020 ◽  
Author(s):  
Patil Ashlesh ◽  
K K Deepak ◽  
Kochhar Kanwal Preet

AbstractSudoku is a popular leisure time activity that involves no math, but is based on logic based combinatorial number placement in a matrix. Many studies have been dedicated towards finding an algorithm to solve Sudoku but investigation of the neural substrates involved in Sudoku has been challenging. It is difficult to measure the brain activity during 9×9 Sudoku using traditional fMRI technique due to the procedural constraints. 16 optodes fNIRS (functional near infrared spectroscopy) forms an excellent alternative to study the activity of prefrontal cortex (PFC) during Sudoku task. Sudoku task was divided into two steps to understand the differential function of the PFC while applying heuristic rules. Classical two-way ANOVA as well as General Linear Model based approach was used to analyze the data. 28-noise free recording from right-handed participants revealed increased activity in all 16 optode locations during step 1 (3 × 3 subgrids) and step 2 (easy level 9×9 Sudoku) as compared to rest. Contrasting the step2-step1 revealed that medial regions of PFC were preferentially activated. These findings suggest the role of these regions, while applying multiple heuristic rules to solve 9×9 Sudoku puzzle.Graphical abstractHighlightsThis is first fNIRS study that tried to unravel the role of PFC during Sudoku task.Uniquely divided the Sudoku task into two steps to understand the differential role of PFC while applying multiple heuristic rules.Both the medial and lateral regions of PFC are activated during Sudoku task.However, the medial regions of PFC play a differential role, especially when we consider the row and the column rule of Sudoku.


Sign in / Sign up

Export Citation Format

Share Document