scholarly journals Land Use Land Cover Changes and its Implication on the conservation of Re-introduced Kihansi Spay Toads (Nectophrynoides asperginis) in Kihansi Gorge-Tanzania

Author(s):  
Atuhombye Sigala ◽  
Kelvin Ngongolo ◽  
Naza Mmbaga

Abstract Background Land use land cover change (LULCC) is a global threat to biodiversity conservation. Endemic species such as Kihansi spray toads (KST) are prone to extinction due to LULCC. This study assessed the LULCC of the Kihansi catchment (KC), a potential habitat for the KST and adjacent areas. Remote sensing (RS), geographical information system (GIS) and 156 questionnaires administered to three surrounding villages namely: Mgugwe, Udagaji and Ukami were used to assess the LULCC forms in the study area. Landsat imagery and ground truthing, were used to classify and monitor LULCC for 25 years from 1995 to 2020. Results Settlements and agricultural land increased by 26.23% and 3.7% respectively. On the other hand, forested land decreased by a rate of 10-20% per year. Across respondents a significant increase (p = 0.041) of the population was reported which contributed to settlement expansion. LULC of KC and adjacent areas were observed to change over the years that anticipate threatening the reintroduced KST and its habitat. Conclusions This study provides baseline information for land use planning in KC and adjacent areas that consider the sustainable conservation of re-introduced KST while improving the livelihood of the adjacent local communities.

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1353
Author(s):  
Hossain Mohammad Arifeen ◽  
Khamphe Phoungthong ◽  
Ali Mostafaeipour ◽  
Nuttaya Yuangyai ◽  
Chumpol Yuangyai ◽  
...  

At present, urbanization is a very common phenomenon around the world, especially in developing countries, and has a significant impact on the land-use/land-cover of specific areas, producing some unwanted effects. Bangladesh is a tightly inhabited country whose urban population is increasing every day due to the expansion of infrastructure and industry. This study explores the land-use/land-cover change detection and urban dynamics of Gazipur district, Bangladesh, a newly developed industrial hub and city corporation, by using satellite imagery covering every 10-year interval over the period from 1990 to 2020. Supervised classification with a maximum likelihood classifier was used to gather spatial and temporal information from Landsat 5 (TM), 7 (ETM+) and 8 (OLI/TIRS) images. The Geographical Information System (GIS) methodology was also employed to detect changes over time. The kappa coefficient ranged between 0.75 and 0.90. The agricultural land was observed to be shrinking very rapidly, with an area of 716 km2 in 2020. Urbanization increased rapidly in this area, and the urban area grew by more than 500% during the study period. The urbanized area expanded along major roads such as the Dhaka–Mymensingh Highway and Dhaka bypass road. The urbanized area was, moreover, concentrated near the boundary line of Dhaka, the capital city of Bangladesh. Urban expansion was found to be influenced by demographic-, economic-, location- and accessibility-related factors. Therefore, similarly to many countries, concrete urban and development policies should be formulated to preserve the environment and, thereby, achieve sustainable development goal (SDG) 11 (sustainable cities and communities).


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Karagama Kolo Geidam ◽  
◽  
Nor Aizam Adnan ◽  
Baba Alhaji Umar ◽  
◽  
...  

Change detection is useful in many applications related to land use and land cover change (LULCC), such as shifting cultivation and landscape changes. Land degradation and desertification. Remote sensing technology has been used for the detection of the changes in land use land cover in Damaturu town Nigeria. The main objectives of this research is to derive the land use/cover change map of Damaturu town from 1986 to 2017 and to quantify land use/ land cover change in the study area. Methodology employed while carry the research includes three satellites images for the year 1986, 1998 and 2017 were downloaded from USGS websites and used for detecting the land cover changes. Ground truth points were collected using google images and used for verification of image classifications. The accuracy of images classification was checked using ground truth point which showed the overall accuracy of 84.6% and a kappa coefficient of 0.89 which indicated that the method of classification was accurate. In the process of the research work, an increased was recorded in the built-up area which rose from 7.2% to 22.0%, open space increased from 10.8 to 22.8%, vegetation from 4.0% to 9.7%, water bodies from 0.0% to 0.1% while agricultural land decreased from 78% to 45.4% due to increase in interest of building as a result of the expansion of the town. The study arrived at the conclusion that there has been a significant land use change due to increase in population and development interest in built up areas which resulted in increased of amount of agricultural land being converted to build up areas over the period of 31 years.


Author(s):  
S. Ravichandran ◽  
I. K. Manonmani

Land use / Land cover change is one of the most sensitive factors that show the interactions between human activities and the ecological environment. This research study demonstrated the importance of geographical information system and remote sensing technologies in spatial temporal data analysis and also this paper shows a GIS and remote sensing approach for modeling of spatial - temporal pattern of land use and land cover change (LULC) in a fastest growing towns / industrial region of Karur town. QGIS 3.10 version and Arc GIS 10.2 software platforms were utilized in the study for Image processing, LULC mapping and change detection analysis. USGS Earth explorer Landsat series satellite imageries were acquired and LULC maps were prepared for the years 1991, 2000, 2010 and 2020. Supervised classification with maximum likelihood algorithm is adopted for LULC classification. The LULC classes are Built upland, Agricultural land, Barren land and Water body based on NRSA Level – I supervised classification. The Built-up area has drastically increased from 1991 to 2020. It has increased more than double. It was 17 percent in 1991 and increased to 40 percent in 2020. This clearly shows Karur town is the becoming more and more urbanized.


Author(s):  
M. Kaur ◽  
S. Singh ◽  
V. K. Verma ◽  
B. Pateriya

Morphometric analysis is the measurement and mathematical analysis of the landforms. The delineation of drainage system is of utmost importance in understanding hydrological system of an area, water resource management and it's planning in an effective manner. Morphometric analysis and land use change detection of two sub-watersheds namely Kukar Suha and Ratewal of district Shahid Bhagat Singh Nagar, Punjab, India was carried out for quantitative description of drainage and characterisation. The stream order, stream number, stream length, mean stream length, and other morphometric analysis like bifurcation ratio, drainage density, texture, relief ratio, ruggedness number etc. were measured. The drainage pattern of Kukar Suha and Ratewal is mainly dendritic. The agriculture and settlements came up along the drainage network causes the pattern disturbance in the watershed. The study was undertaken to spotlight the morphometric parameters, their impact on the basin and the land use land cover changes occurred over the period of time. Morphometric parameters such as linear aspect, areal aspect and relief aspect of the watershed are computed. The land use/land cover change was extracted from LISS IV Mx + Cartosat1 PAN data. ASTER data is used to prepare DEM (digital elevation model) and geographical information system (GIS) was used to evaluate various morphometric parameters in ArcGIS10 software.


Author(s):  
M. Moniruzzam ◽  
A. Roy ◽  
C. M. Bhatt ◽  
A. Gupta ◽  
N. T. T. An ◽  
...  

<p><strong>Abstract.</strong> Urbanization has given a massive pace in Land Use Land Cover (LULC) changes in rapidly growing cities like Khulna, i.e. the third largest city of Bangladesh. Such impacting changes have taken place in over-decadal scale. It is important because detailed analysis with regularly monitoring will be fruitful to drag the attention of decision maker and urban planner for sustainable development and to overcome the problem of urban sprawl. In this present study, changes in LULC as an impact of urbanization, have been investigated for years 1997, 2002, 2007, 2012 and 2017; using three generation of Landsat data in geographic information system (GIS) domain which has the height competence in recent time. Initially, LULC have categorised into Built-up, Vegetation, Vacant Land, and Waterbody with the help of supervised classification technique. Field work had been carried out for acquiring training dataset and validation. The accuracy has been achieved more than 85% for the changes assessed. Analysis has an outlet with increase in built-up area by 27.92% in year 1997 to 2017 and continued respectively in each successive interval of half a decade at the given years. On the other side waterbody and vacant land decreased correspondingly. Bound to mention, instead to having largest temporal durability, the moderate spatial resolution of Landsat data has a limitation for such urban studies. These changes are responsible by both of natural or anthropogenic factors. Such study will provide a better way out of optimization of land-use to prepare detail area plan (DAP) of Khulna City Corporation (KCC) and Khulna development authority (KDA).</p>


2019 ◽  
Vol 41 (1) ◽  
pp. 146-153 ◽  
Author(s):  
Megersa Olumana Dinka ◽  
Degefa Dhuga Chaka

Abstract Land use/land cover changes (LULCC) at Adei watershed (Ethiopia) over a period of 23 years (1986–2009) has been analysed from LANDSAT imagery and ancillary data. The patterns (magnitude and direction) of LULCC were quantified and the final land use/land cover maps were produced after a supervised classification with appropriate post-processing. Image analysis results revealed that the study area has undergone substantial LULCC, primarily a shift from natural cover into managed agro-systems, which is apparently attributed to the increasing both human and livestock pressure. Over the 23 years, the aerial coverage of forest and grass lands declined by 8.5% and 4.3%, respectively. On the other hand, agricultural and shrub lands expanded by 9.1% and 3.7%, respectively. This shows that most of the previously covered by forest and grass lands are mostly shifted to the rapidly expanding farm land use classes. The findings of this study suggested that the rate of LULCC over the study period, particularly deforestation due to the expansion of farmland need to be given due attention to maintain the stability and sustainability of the ecosystem.


Author(s):  
V. N. Mishra ◽  
P. Kumar ◽  
D. K. Gupta ◽  
R. Prasad

Land use land cover classification is one of the widely used applications in the field of remote sensing. Accurate land use land cover maps derived from remotely sensed data is a requirement for analyzing many socio-ecological concerns. The present study investigates the capabilities of dual polarimetric C-band SAR data for land use land cover classification. The MRS mode level 1 product of RISAT-1 with dual polarization (HH & HV) covering a part of Varanasi district, Uttar Pradesh, India is analyzed for classifying various land features. In order to increase the amount of information in dual-polarized SAR data, a band HH + HV is introduced to make use of the original two polarizations. Transformed Divergence (TD) procedure for class separability analysis is performed to evaluate the quality of the statistics prior to image classification. For most of the class pairs the TD values are greater than 1.9 which indicates that the classes have good separability. Non-parametric classifier Support Vector Machine (SVM) is used to classify RISAT-1 data with optimized polarization combination into five land use land cover classes like urban land, agricultural land, fallow land, vegetation and water bodies. The overall classification accuracy achieved by SVM is 95.23 % with Kappa coefficient 0.9350.


2019 ◽  
Vol 4 (6) ◽  
pp. 84-89 ◽  
Author(s):  
Aniekan Effiong Eyoh ◽  
Akwaowo Ekpa

The research was aim at assessing the change in the Built-up Index of Uyo metropolis and its environs from 1986 to 2018, using remote sensing data. To achieve this, a quantitative analysis of changes in land use/land cover within the study area was undertaken using remote sensing dataset of Landsat TM, ETM+ and OLI sensor images of 1986, 2000 and 2018 respectively. Supervised classification, using the maximum likelihood algorithm, was used to classify the study area into four major land use/land cover types; built-up land, bare land/agricultural land, primary swamp vegetation and secondary vegetation. Image processing was carried out using ERDAS IMAGINE and ArcGIS software. The Normalised Difference Built-up Index (NDBI) was calculated to obtain the built-up index for the study area in 1986, 2000 and 2018 as -0.20 to +0.45, -0.13 to +0.55 and -0.19 to +0.63 respectively. The result of the quantitative analysis of changes in land use/land cover indicated that Built-up Land had been on a constant and steady positive growth from 6.76% in 1986 to 11.29% in 2000 and 44.04% in 2018.


Sign in / Sign up

Export Citation Format

Share Document