scholarly journals Spatiotemporal Dynamics of Cerebral Vascular Permeability in Type 2 Diabetes-Related Cerebral Microangiopathy

Author(s):  
Ying-Chen Chen ◽  
Bing-Ze Lu ◽  
Yu-Chen Shu ◽  
Yuan-Ting Sun

Abstract Objective Diabetes-related cerebral microangiopathy can manifest as cerebral small vessel disease (CSVD) and exhibit cognitive decline. To find the early change of function in advance, this study examined the spatiotemporal dynamics of cerebral permeability (Ktrans) in the progression of diabetes-related CSVD. Methods Cerebral vascular permeability was crossectional measured in diabetic patients with or without CSVD, and non-diabetic patients with or without CSVD by using dynamic contrast-enhanced MRI (DCE-MRI). Results In all diabetic patients, the Ktrans of white matter (WM) was increased. However, the Ktrans of gray matter (GM) was only increased in those with CSVD. This suggested the earlier involvement of WM than GM and indicated the development of diabetes-related cerebral microangiopathy was prior to it could be visualized as features of CSVD on MRI. To broaden the application of cerebral permeability and overcome the limitations of DCE-MRI, the commonly available CSVD items of MRI were used to indicate the increase in Ktrans. Among all CSVD items, the presence of microbleeds was most correlated with the increased permeability in all patients. In contrast to non-diabetic patients, increased Ktrans in diabetes was more associated with moderate WM hyperintensity but less with the presence of lacunae or multiple perivascular spaces. The differential correlation suggested distinct mechanisms underlying diabetes-related CSVD and other CSVDs. Conclusions This study highlights the early development of cerebral microangiopathy in diabetes and broadens the applicability of cerebral permeability. The results may increase the proactivity of clinicians in recognizing the subsequent neurological comorbidities.

2022 ◽  
Vol 12 ◽  
Author(s):  
Ying-Chen Chen ◽  
Bing-Ze Lu ◽  
Yu-Chen Shu ◽  
Yuan-Ting Sun

AimsDiabetes-related cerebral microangiopathy can manifest as cerebral small vessel disease (CSVD) and exhibit cognitive decline. To find the early change of function in advance, this study examined the spatiotemporal dynamics of cerebral vascular permeability (Ktrans) in the progression of type 2 diabetes mellitus (T2DM).MethodsKtrans was cross-sectionally measured in T2DM and non-diabetes groups with or without CSVD using dynamic contrast-enhanced MRI (DCE-MRI).ResultsIn all patients with T2DM, the Ktrans of white matter (WM) was increased, whereas the Ktrans of gray matter (GM) was increased only in T2DM with CSVD. The involvement of WM was earlier than GM and was before the CSVD features could be visualized on MRI. Among the commonly available four CSVD items of MRI, microbleeds were the most sensitive, indicating the increased permeability in all patients. Increased Ktrans in T2DM was more associated with moderate WM hyperintensity but less with the presence of lacunae or multiple perivascular spaces, in contrast to patients without diabetes. The differential correlation suggested distinct mechanisms underlying diabetes-related CSVD and other CSVDs.ConclusionsThis study highlights the early development of cerebral microangiopathy with increased BBB leakage in T2DM, before the CSVD features can be visualized on MRI. The results may increase the proactivity of clinicians in recognizing the subsequent neurological comorbidities.


2020 ◽  
Vol 6 (6) ◽  
pp. 43
Author(s):  
Jose Bernal ◽  
María Valdés-Hernández ◽  
Javier Escudero ◽  
Eleni Sakka ◽  
Paul A. Armitage ◽  
...  

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to examine the distribution of an intravenous contrast agent within the brain. Computational methods have been devised to analyse the contrast uptake/washout over time as reflections of cerebrovascular dysfunction. However, there have been few direct comparisons of their relative strengths and weaknesses. In this paper, we compare five semiquantitative methods comprising the slope and area under the enhancement-time curve, the slope and area under the concentration-time curve ( S l o p e C o n and A U C C o n ), and changes in the power spectrum over time. We studied them in cerebrospinal fluid, normal tissues, stroke lesions, and white matter hyperintensities (WMH) using DCE-MRI scans from a cohort of patients with small vessel disease (SVD) who presented mild stroke. The total SVD score was associated with A U C C o n in WMH ( p < 0.05 ), but not with the other four methods. In WMH, we found higher A U C C o n was associated with younger age ( p < 0.001 ) and fewer WMH ( p < 0.001 ), whereas S l o p e C o n increased with younger age ( p > 0.05 ) and WMH burden ( p > 0.05 ). Our results show the potential of different measures extracted from concentration-time curves extracted from the same DCE examination to demonstrate cerebrovascular dysfunction better than those extracted from enhancement-time curves.


2021 ◽  
Vol 13 ◽  
Author(s):  
Eun Young Choi ◽  
Yae Won Park ◽  
Minyoung Lee ◽  
Min Kim ◽  
Christopher Seungkyu Lee ◽  
...  

Purpose: The aim of this study was to evaluate whether perivascular space (PVS) severity and retinal ganglion cell layer (GCL) thickness differed based on the stage of diabetic retinopathy (DR) and the cognitive status in patients with DR.Methods: A total of 81 patients with DR (51 in the non-proliferative group and 30 in the proliferative group) were included in this retrospective, cross-sectional study. PVS severity was assessed in the basal ganglia (BG) and centrum semiovale using MRI. The total cerebral small vessel disease (SVD) score was determined based on the numbers of lacunes and microbleeds and the severity of white matter hyperintensity. Optical coherence tomography was used to measure foveal and perifoveal GCL thicknesses. Cerebral SVD markers and cognitive function were compared between the groups, and correlations between the BG-PVS severity and the Mini-Mental Status Examination (MMSE) scores and GCL parameters were evaluated.Results: Patients with proliferative DR had higher BG-PVS severity (P = 0.012), higher total cerebral SVD scores (P = 0.035), reduced GCL thicknesses in the inferior (P = 0.027), superior (P = 0.046), and temporal (P = 0.038) subfields compared to patients with non-proliferative DR. In addition, the BG-PVS severity was negatively correlated with the MMSE score (P = 0.007), and the GCL thickness was negatively correlated with the BG-PVS severity (P-values &lt; 0.05 for inferior, superior, and temporal subfields).Conclusion: BG-PVS severity and retinal GCL thickness may represent novel imaging biomarkers reflecting the stage of DR and cognitive decline in diabetic patients. Furthermore, these results suggest a possible link between cerebral and retinal neurodegeneration at the clinical level.


2020 ◽  
Vol 50 (1) ◽  
pp. 59-68
Author(s):  
Sevtap Tugce Ulas ◽  
Kay Geert Hermann ◽  
Marcus R. Makowski ◽  
Robert Biesen ◽  
Fabian Proft ◽  
...  

Abstract Objective To evaluate the performance of dynamic contrast-enhanced CT (DCE-CT) in detecting and quantitatively assessing perfusion parameters in patients with arthritis of the hand compared with dynamic contrast-enhanced MRI (DCE-MRI) as a standard of reference. Materials and methods In this IRB-approved randomized prospective single-centre study, 36 consecutive patients with suspected rheumatoid arthritis underwent DCE-CT (320-row, tube voltage 80 kVp, tube current 8.25 mAs) and DCE-MRI (1.5 T) of the hand. Perfusion maps were calculated separately for mean transit time (MTT), time to peak (TTP), relative blood volume (rBV), and relative blood flow (rBF) using four different decomposition techniques. Region of interest (ROI) analysis was performed in metacarpophalangeal joints II–V and in the wrist. Pairs of perfusion parameters in DCE-CT and DCE-MRI were compared using a two-tailed t test for paired samples and interpreted for effect size (Cohen’s d). According to the Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) scoring results, differentiation of synovitis-positive and synovitis-negative joints with both modalities was assessed with the independent t test. Results The two modalities yielded similar perfusion parameters. Identified differences had small effects (d 0.01–0.4). DCE-CT additionally differentiates inflamed and noninflamed joints based on rBF and rBV but tends to underestimate these parameters in severe inflammation. The total dose-length product (DLP) was 48 mGy*cm with an estimated effective dose of 0.038 mSv. Conclusion DCE-CT is a promising imaging technique in arthritis. In patients with a contraindication to MRI or when MRI is not available, DCE-CT is a suitable alternative to detect and assess arthritis.


Apmis ◽  
1957 ◽  
Vol 40 (2) ◽  
pp. 89-95
Author(s):  
C.‐J. Clemedson ◽  
H. Hartelius ◽  
G. Holmberg

2021 ◽  
Vol 11 (4) ◽  
pp. 1880
Author(s):  
Roberta Fusco ◽  
Adele Piccirillo ◽  
Mario Sansone ◽  
Vincenza Granata ◽  
Paolo Vallone ◽  
...  

Purpose: The aim of the study was to estimate the diagnostic accuracy of textural, morphological and dynamic features, extracted by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images, by carrying out univariate and multivariate statistical analyses including artificial intelligence approaches. Methods: In total, 85 patients with known breast lesion were enrolled in this retrospective study according to regulations issued by the local Institutional Review Board. All patients underwent DCE-MRI examination. The reference standard was pathology from a surgical specimen for malignant lesions and pathology from a surgical specimen or fine needle aspiration cytology, core or Tru-Cut needle biopsy for benign lesions. In total, 91 samples of 85 patients were analyzed. Furthermore, 48 textural metrics, 15 morphological and 81 dynamic parameters were extracted by manually segmenting regions of interest. Statistical analyses including univariate and multivariate approaches were performed: non-parametric Wilcoxon–Mann–Whitney test; receiver operating characteristic (ROC), linear classifier (LDA), decision tree (DT), k-nearest neighbors (KNN), and support vector machine (SVM) were utilized. A balancing approach and feature selection methods were used. Results: The univariate analysis showed low accuracy and area under the curve (AUC) for all considered features. Instead, in the multivariate textural analysis, the best performance (accuracy (ACC) = 0.78; AUC = 0.78) was reached with all 48 metrics and an LDA trained with balanced data. The best performance (ACC = 0.75; AUC = 0.80) using morphological features was reached with an SVM trained with 10-fold cross-variation (CV) and balanced data (with adaptive synthetic (ADASYN) function) and a subset of five robust morphological features (circularity, rectangularity, sphericity, gleaning and surface). The best performance (ACC = 0.82; AUC = 0.83) using dynamic features was reached with a trained SVM and balanced data (with ADASYN function). Conclusion: Multivariate analyses using pattern recognition approaches, including all morphological, textural and dynamic features, optimized by adaptive synthetic sampling and feature selection operations obtained the best results and showed the best performance in the discrimination of benign and malignant lesions.


Author(s):  
Lamiaa Mohamed Bassam Hashem ◽  
Sherihan W. Y. Gareer ◽  
Aya Mohamed Bassam Hashem ◽  
Sherihan Fakhry ◽  
Yasmin Mounir Tohamey

Abstract Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has always been a problem solver in troublesome breast lesions. Despite its many advantages, the encountered low specificity results in unnecessary biopsies. Diffusion-weighted MRI (DW-MRI) is a well-established technique that helps in characterizing breast lesions according to their water diffusivity. So this work aimed to assess the diagnostic performance of DW-MRI in troublesome breast lesions and see if it can replace DCE-MRI study. Results In our prospective study, we included 86 patients with mammography and/or ultrasound-detected 90 probably benign or probably malignant (BIRADS 3 or 4) breast lesions. Among the studied cases, 49/90 lesions were benign, and 41/90 were malignant. Combined analysis of morphological and kinetic findings in DCE-MRI had achieved the highest sensitivity of 95.1%. DW-MRI alone was less sensitive (73.2%) yet more specific (83.7%) than DCE-MRI (77.6%). Diagnostic accuracy of DCE-MRI was higher (85.6%) as compared to DW-MRI which was (78.9%). Conclusion DCE-MRI is the cornerstone in the workup of troublesome breast lesions. DW-MRI should not be used as supplementary tool unless contrast administration is contraindicated. Combining both DCE-MRI and DW-MRI is the ultimate technique for better lesion evaluation.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 520-530
Author(s):  
Eleftherios Kontopodis ◽  
Kostas Marias ◽  
Georgios C. Manikis ◽  
Katerina Nikiforaki ◽  
Maria Venianaki ◽  
...  

AbstractThis study aims to examine a time-extended dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) protocol and report a comparative study with three different pharmacokinetic (PK) models, for accurate determination of subtle blood–brain barrier (BBB) disruption in patients with multiple sclerosis (MS). This time-extended DCE-MRI perfusion protocol, called Snaps, was applied on 24 active demyelinating lesions of 12 MS patients. Statistical analysis was performed for both protocols through three different PK models. The Snaps protocol achieved triple the window time of perfusion observation by extending the magnetic resonance acquisition time by less than 2 min on average for all patients. In addition, the statistical analysis in terms of adj-R2 goodness of fit demonstrated that the Snaps protocol outperformed the conventional DCE-MRI protocol by detecting 49% more pixels on average. The exclusive pixels identified from the Snaps protocol lie in the low ktrans range, potentially reflecting areas with subtle BBB disruption. Finally, the extended Tofts model was found to have the highest fitting accuracy for both analyzed protocols. The previously proposed time-extended DCE protocol, called Snaps, provides additional temporal perfusion information at the expense of a minimal extension of the conventional DCE acquisition time.


Author(s):  
L. A. R. Righesso ◽  
M. Terekhov ◽  
H. Götz ◽  
M. Ackermann ◽  
T. Emrich ◽  
...  

Abstract Objectives Micro-computed tomography (μ-CT) and histology, the current gold standard methods for assessing the formation of new bone and blood vessels, are invasive and/or destructive. With that in mind, a more conservative tool, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), was tested for its accuracy and reproducibility in monitoring neovascularization during bone regeneration. Additionally, the suitability of blood perfusion as a surrogate of the efficacy of osteoplastic materials was evaluated. Materials and methods Sixteen rabbits were used and equally divided into four groups, according to the time of euthanasia (2, 3, 4, and 6 weeks after surgery). The animals were submitted to two 8-mm craniotomies that were filled with blood or autogenous bone. Neovascularization was assessed in vivo through DCE-MRI, and bone regeneration, ex vivo, through μ-CT and histology. Results The defects could be consistently identified, and their blood perfusion measured through DCE-MRI, there being statistically significant differences within the blood clot group between 3 and 6 weeks (p = 0.029), and between the former and autogenous bone at six weeks (p = 0.017). Nonetheless, no significant correlations between DCE-MRI findings on neovascularization and μ-CT (r =−0.101, 95% CI [−0.445; 0.268]) or histology (r = 0.305, 95% CI [−0.133; 0.644]) findings on bone regeneration were observed. Conclusions These results support the hypothesis that DCE-MRI can be used to monitor neovascularization but contradict the premise that it could predict bone regeneration as well.


2021 ◽  
Vol 11 (6) ◽  
pp. 775
Author(s):  
Sung-Suk Oh ◽  
Eun-Hee Lee ◽  
Jong-Hoon Kim ◽  
Young-Beom Seo ◽  
Yoo-Jin Choo ◽  
...  

(1) Background: Blood brain barrier (BBB) disruption following traumatic brain injury (TBI) results in a secondary injury by facilitating the entry of neurotoxins to the brain parenchyma without filtration. In the current paper, we aimed to review previous dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies to evaluate the occurrence of BBB disruption after TBI. (2) Methods: In electronic databases (PubMed, Scopus, Embase, and the Cochrane Library), we searched for the following keywords: dynamic contrast-enhanced OR DCE AND brain injury. We included studies in which BBB disruption was evaluated in patients with TBI using DCE-MRI. (3) Results: Four articles were included in this review. To assess BBB disruption, linear fit, Tofts, extended Tofts, or Patlak models were used. KTrans and ve were increased, and the values of vp were decreased in the cerebral cortex and predilection sites for diffusion axonal injury. These findings are indicative of BBB disruption following TBI. (4) Conclusions: Our analysis supports the possibility of utilizing DCE-MRI for the detection of BBB disruption following TBI.


Sign in / Sign up

Export Citation Format

Share Document