scholarly journals UBE2T Regulates FANCI Monoubiquitination to Promote NSCLC Progression by Activating EMT

Author(s):  
Jiguang Zhang ◽  
Jingdong Wang ◽  
Jincheng Wu ◽  
Jianyuan Huang ◽  
Zhaoxian Lin ◽  
...  

Abstract Background: Fanconi anemia complementation group I (FANCI) acts as a critical protein factor for maintaining DNA stability. However, roles of FANCI in tumors has not been well revealed. In current study, we aimed to explore the function and potential mechanism of FANCI in non-small-cell lung cancer (NSCLC).Methods: To detect the expression of FANCI and UBE2T in NSCLC tissues, quantitative reverse-transcription PCR (qRT-PCR) and Western blot assays were employed. CCK-8, wound healing, Transwell, flow cytometry analysis and tumor xenograft were used to investigate the biological effects of FANCI in NSCLC in vitro and in vivo. FANCI binds with UBE2T was confirmed using coimmunoprecipitation (co-IP) assay. The EMT protein markers were detected via Western blot. Results: FANCI was upregulated in NSCLC tumor tissues compared with adjacent. In A549 and H1299 cells, knockdown of FANCI inhibited cell growth, migration, invasion and cell cycle,as well as epithelial-to-mesenchymal transition (EMT) in vitro. In vivo, the tumor growth was also repressed when FANCI was downregulated. Mechanistically, UBE2T directly bound with FANCI and regulated the monoubiquitination of FANCI. Futhermore, UBE2T restored the inhibitory effects induced by knocking down FANCI in NSCLC cells. Conclusion: FANCI was a putative oncogene in NSCLC, and was monouniubiquitinated by UBE2T to regulate cell growth, invasion and migration. Our findings suggested that FANCI might applied as a predicted biomarker and therapeutic target for NSCLC.

2020 ◽  
Author(s):  
Qing Song ◽  
Liu Yang ◽  
Zhifen Han ◽  
Xinnan Wu ◽  
Ruixiao Li ◽  
...  

Abstract Background: Tanshinone IIA (Tan IIA) is a major active ingredient extracted from Salvia miltiorrhiza, which has been proved to inhibit metastasis of various cancers including colorectal cancer (CRC). However, the detailed mechanisms of Tan IIA against CRC metastasis are not well explored. Epithelial-to-mesenchymal transition (EMT) exerts an important regulatory role in CRC metastasis, and our previous mechanism studies demonstrated that β-arrestin1 could regulate CRC EMT partly through β-catenin signaling pathway. Therefore, in this work we investigated whether Tan IIA could regulate CRC EMT through β-arrestin1-mediated β-catenin signaling pathway in vivo and in vitro.Methods: The nude mice tail vein metastasis model was established to observe the effect of Tan IIA on CRC lung metastasis in vivo. The lung metastasis was evaluated by living animal imaging and hemaoxylin-eosin staining. The migratory ability of CRC cells in vitro were measured by transwell and wound healing assays. The protein expression and cellular localization of β-arrestin1 and β-catenin were characterized by immunofluorescence staining and western blot. The β-catenin signaling pathway related proteins and EMT associated proteins in CRC cells were detected by western blot and immunohistochemistry. Results: Our results showed that Tan IIA inhibited the lung metastases of CRC cells in vivo and extended the survival time of nude mice. In vitro, Tan IIA increased the expression of E-cadherin, decreased the secretion of Snail, N-cadherin and Vimentin, thus suppressed EMT and the migratory ability of CRC cells. Further study found the mechanism involving in Tan IIA regulating EMT and metastasis, referring to the suppression of β-arrestin1 expression, reduction of β-catenin nuclear localization, thereby the decreased activity of β-catenin signaling. Conclusion: Our data revealed a new mechanism of Tan IIA on the suppression of EMT and metastasis in CRC via β-arrestin1-mediated β-catenin signaling pathway, and provided support for Tan IIA as anti-metastatic agents in CRC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jing Lin ◽  
Lei Jiang ◽  
Xiaogang Wang ◽  
Wenxin Wei ◽  
Chaoli Song ◽  
...  

Prolyl-4-hydroxylase subunit 2 (P4HA2) is a member of collagen modification enzymes involved in the remodeling of the extracellular matrix (ECM). Mounting evidence has suggested that deregulation of P4HA2 is common in cancer. However, the role of P4HA2 in glioma remains unknown. The present study aimed to elucidate the expression pattern, oncogenic functions, and molecular mechanisms of P4HA2 in glioblastoma cells. The TCGA datasets and paraffin samples were used for examining the expressions of P4HA2. P4HA2-specific lentivirus was generated to assess its oncogenic functions. A P4HA2 enzyme inhibitor (DHB) and an AKT agonist (SC79) were utilized to study the mechanisms. As a result, we demonstrated that P4HA2 is overexpressed in glioma and inversely correlates with patient survival. Knockdown of P4HA2 inhibited proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) like phenotype of glioma cells in vitro and suppressed tumor xenograft growth in vivo. Mechanistically, expressions of a series of collagen genes and of phosphorylated PI3K/AKT were downregulated by either P4HA2 silencing or inhibition of its prolyl hydroxylase. Finally, the inhibitory effects on the migration, invasion, and EMT-related molecules by P4HA2 knockdown were reversed by AKT activation with SC79. Our findings for the first time reveal that P4HA2 acts as an oncogenic molecule in glioma malignancy by regulating the expressions of collagens and the downstream PI3K/AKT signaling pathway.


Author(s):  
Huanyu Zhang ◽  
Guohui Qin ◽  
Chaoqi Zhang ◽  
Huiyun Yang ◽  
Jinyan Liu ◽  
...  

Abstract Background Tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) was initially considered an immunity guard; however, its function remains controversial. Besides immune cells, lung and colon cancer cells have also been reported to express TRAIL, which can promote tumor invasion and metastasis. However, the biological function and underlying mechanism of action of TRAIL in esophageal squamous cell carcinoma (ESCC) remain poorly elucidated. Methods The ESCC cells stemness, migration, and proliferation ability was assessed by sphere formation, Transwell, and CCK8 assay. The stemness- and epithelial-mesenchymal transition (EMT)- related genes expression levels were analyzed by Western blot and RT-qPCR. The signal activation was conducted by Western blot. The xenograft mouse experiments and lung metastasis model were performed to confirm our findings in vitro. Results Herein, we found that TRAIL is a negative predictor in patients with ESCC. To further investigate the biological function of TRAIL, we established TRAIL knockdown and overexpression ESCC cell lines and found that TRAIL induced EMT and promoted tumor aggressiveness. Furthermore, we demonstrated that TRAIL- overexpressing cells upregulated PD-L1 expression, which was dependent on the p-ERK/STAT3 signaling pathway. We obtained similar results when using recombinant human TRAIL. Finally, we validated the biological role and mechanism of action of TRAIL in vivo. Conclusions These findings demonstrate that TRAIL promotes ESCC progression by enhancing PD-L1 expression, which induces EMT. This may explain the failure of TRAIL preclinical trials.


2020 ◽  
Author(s):  
Hongzhen Li ◽  
Chunyan Peng ◽  
Chenhui Zhu ◽  
Shuang Nie ◽  
Xuetian Qian ◽  
...  

Abstract BackgroundHypoxia is a characteristic of the tumor microenvironments within Pancreatic cancer (PC) which has been linked to its malignancy. Oxidative stress, characterized by NADPH oxidase (NOX) activation, and epithelial-to-mesenchymal transition (EMT) could be induced by hypoxia which involved in tumor progression and metastasis. However, the relationship between hypoxia-induced oxidative stress and EMT has not been clarified, and the regulatory mechanism of NADPH oxidase is still unknown. MethodsA hypoxic-related gene signature and its associated pathways in PC were identified by bioinformatics method. Candidate downstream gene (NOX4), responding to hypoxia was validated by RT-PCR and western blot. In vitro and in vivo assays as well as tumor samples from our centre were preformed to explore the phenotype of NOX4 in PC. Immunofluorescence, western blot and chromatin immunoprecipitation assays were further applied to search for detailed mechanism. ResultsWe established a hypoxia-related gene signature within PC which was prognostic and linked with up-regulated EMT pathway. Then we found that hypoxia could induce stable up-regulation of NOX4, which is essential for EMT activation. Elevated expression of NOX4 was observed in PC samples and positively associated with advanced tumor grade and unfavorable prognosis. In vivo and in vitro experiments demonstrated NOX4 overexpress or inhibition in pancreatic cancer cells caused changes of proliferation and invasion ability. Then we found NOX4 could increase the methylation modification of histone H3 and regulated the transcription of EMT-associated gene_ snail family transcriptional repressor 1 (SNAIL1). ConclusionsThis study highlights the prognostic role of hypoxia-related genes in PC and strong correlation with EMT pathway. Our results also creatively discovered that NOX4 was an essential mediator for hypoxia-induced histone methylation modification and EMT in PC cells.


2020 ◽  
Author(s):  
Huanyu Zhang ◽  
Guohui Qin ◽  
Huiyun Yang ◽  
Jinyan Liu ◽  
Peng Wu ◽  
...  

Abstract Background: Tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) was initially considered an immunity guard; however, its function remains controversial. Besides immune cells, lung and colon cancer cells have also been reported to express TRAIL, which can promote tumor invasion and metastasis. However, the biological function and underlying mechanism of action of TRAIL in esophageal squamous cell carcinoma (ESCC) remain poorly elucidated.Methods: The ESCC cells stemness, migration, and proliferation ability was assessed by sphere formation, Transwell, and CCK8 assay. The stemness- and EMT- related genes expression levels were analyzed by Western blot and RT-qPCR. The signal activation was conducted by Western blot. The PDX Model were performed to confirm our findings in vitro.Results: Herein, we found that TRAIL is a negative predictor in patients with ESCC. To further investigate the biological function of TRAIL, we established TRAIL knockdown and overexpression ESCC cell lines and found that TRAIL induced epithelial-mesenchymal transition (EMT) and promoted tumor aggressiveness. Furthermore, we demonstrated that TRAIL- overexpressing cells upregulated PD-L1 expression, which was dependent on the p-ERK/STAT3 signaling pathway. We obtained similar results when using recombinant human TRAIL. Finally, we validated the biological role and mechanism of action of TRAIL in vivo.Conclusions: These findings demonstrate that TRAIL promotes ESCC progression by enhancing PD-L1 expression, which induces EMT. This may explain the failure of TRAIL preclinical trials.Financial support: This work was supported by the National Key Research and Development (2018YFC1313400), the National Nature Science Foundation of China (U1804281, 91942314) and the National Science Fund for Distinguished Young Scholars (82001659).


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Linghui Qin ◽  
Xiaosong Sun ◽  
Fei Zhou ◽  
Cheng Liu

Abstract Background Circular RNA low-density lipoprotein receptor-related protein 6 (circLRP6) is considered as an oncogene in many types of cancers. However, the function and mechanisms of circLRP6 in prostate cancer (PCa) tumorigenesis remain largely undefined. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were conducted to assess the expression of circLRP6, microRNA (miR)-330-5p, and nuclear receptor binding protein 1 (NRBP1). Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2’-deoxyuridine (EDU) incorporation, flow cytometry, transwell, wound healing, and western blot assays were performed to detect cell proliferation, apoptosis, and metastasis in vitro. Subcutaneous tumor growth was observed in nude mice to investigate the role of circLRP6 in vivo. The targeting relationship between miR-330-5p and NRBP1 or circLRP6 was verified using dual-luciferase reporter, pull-down, and RNA immunoprecipitation (RIP) assays. Immunohistochemistry was employed to test relative protein expression. Results CircLRP6 was highly expressed in PCa tissues and cells, knockdown of circLRP6 impaired PCa cell growth and metastasis in vitro by affecting cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT). Mechanistic studies showed that circLRP6 could competitively bind with miR-330-5p to prevent the degradation of its target gene NRBP1. Rescue assay suggested that miR-330-5p inhibition reversed the inhibitory effects of circLRP6 knockdown on PCa cell growth and metastasis. Moreover, overexpression of miR-330-5p suppressed PCa progression via NRBP1. Notably, tumor formation assay indicated that circLRP6 silencing impeded tumor growth and EMT in vivo. Conclusion Our findings demonstrated that circLRP6 promoted PCa tumorigenesis and metastasis through miR-330-5p/NRBP1 axis, suggesting a potential therapeutic target for PCa.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


Sign in / Sign up

Export Citation Format

Share Document