scholarly journals The Effect of SPIO Nanoparticles Size on Transduction of PEGylated Lentiviral Vector

Author(s):  
Hamed Omid ◽  
Amirhosein Paryab ◽  
Yasamin Nakhli ◽  
Kobra Moradzadeh ◽  
Nasim Sajadi ◽  
...  

Abstract Gene editing has revealed many promising opportunities for the treatment of severe diseases including cancers and autoimmunes. There are two main routes for gene delivery: viral and non-viral. Recent research shows viral methods are very close to clinical trials. Nevertheless, there are a couple of obstacles to remove such as difficulty in virus concentration, low efficiency of transduction, and being time-consuming. In this work, by employing magnetic nanoparticles (NP) we tried to solve these problems. Conjugating these nanoparticles to viruses by polyethylene glycol (PEG) can increase sedimentation of viruses due to magnetic and gravity forces even without ultracentrifuge. Moreover, this magnetic force can guide viruses toward cells and tremendously facilitate the transduction process. Nanoparticle size has significant effects and should be considered for this application. As shown, average size nanoparticles revealed the best performance especially in combination with salting-out precipitation and increased transduction efficiency more than 20-fold.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2052-2052
Author(s):  
Kismet M Baldwin ◽  
Fabrizia Urbinati ◽  
Zulema Romero-Garcia ◽  
Donald B. Kohn

Abstract Abstract 2052 Background: Sickle cell disease (SCD) is a multisystem disease, associated with severe episodes of acute illness and progressive organ damage. Currently, the only curative treatment is allogeneic hematopoietic stem cell transplant (HSCT); however, this is limited by availability of HLA compatible donors and by immunological complications of graft rejection or graft-versus-host disease. Autologous stem cell gene therapy for SCD has the potential to treat this illness without the immune suppression needed for current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levasseuer Blood 102:4312–9, 2003). Initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with the βAS3lentiviral (LV) vector for gene therapy of sickle cell disease has been demonstrated in our lab. However, this complex lentiviral vector is produced at a sub-optimal titer and large production batches would be needed to supply clinical trials. Hypothesis: Although, it has been proven that the βAS3 gene can be transduced into CD34+ hematopoietic stem/progenitor cells (HSPC), the transduction efficiency is still not optimal. The CD34+ cell population includes rare long-lived stem cells but also more abundant progenitors, which would be short-lived after transplant. We hypothesize that isolating the more primitive HSPC population (CD34+/CD38− cells approximately 1% of all CD34+ cells) and transducing them with the βAS3 lentiviral vector will increase transduction efficiency and greatly reduce vector needs. Methods: CD34+/CD38− cells were isolated from cord blood (CB) CD34+ cells obtained from healthy donors by fluorescence activated cell sorting (FACS) and transduced with the CCL.βAS3.FB LV vector. After 14 days in culture, vector copy number (VCN) was determined by qPCR. Isolation of a more primitive cell was confirmed via long term culture (LTC) assay for 90 days. At 2–3 weeks intervals, non-adherent cell number was obtained, VCN was analyzed and CFU assays were performed to assess their capability to fully maintain their hematopoietic potential after transduction. Results: CD34+/CD38− cells were effectively isolated using FACS (n=7; 6,329–33,742 cells; 34–99% theoretical yield). The isolated CD34+/CD38- cells were able to generate progeny over an extended period of LTC compared to the CD34+ cells whose cell expansion declined ∼60 days in culture. CFU assays demonstrated that βAS3 gene-modified CB CD34+/CD38- cells were fully capable of maintaining their hematopoietic potential. The isolated CD34+/CD38- cells required 3–40 fold less vector for transduction compared to an equivalent number of these cells contained within the larger, non-fractionated CD34+ preparations. Transduction of CD34+/CD38- cells measured at day 14, by qPCR, was improved relative to CD34+ cells, mean VCN 2.5, +/− SEM 0.33 (range 2–3.5) vs. VCN 1.3, +/− 0.40 (range 0.5–2), respectively (p=0.03). In LTC, VCN remained higher over time in the CD34+/CD38- cells compared to the CD34+ cells, mean VCN 2.0, +/− SEM 0.13 (range 1.6–2.7) vs. VCN 0.5, +/− 0.09 (range 0.2–0.9) respectively. In vivo studies are ongoing to investigate the transduction efficiency of stem/progenitor cells engrafting from CD34+ and CD34+/CD38- cells transplanted in the NSG mouse model. Immunomagnetic isolation of CD34+/CD38- cells using columns is underway in anticipation of potential use in future clinical trials. Further investigations into the mechanisms for increased transduction in the CD34+/CD38- cells are ongoing. Conclusions: This work provides initial evidence for the beneficial effects from isolating human CB CD34+/CD38− cells to improve transduction with the βAS3LV vector for gene therapy of sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3993-3993
Author(s):  
Linda Yingqi Lin ◽  
Samuele Cancellieri ◽  
Jing Zeng ◽  
Francesco Masillo ◽  
My Anh Nguyen ◽  
...  

Abstract CRISPR gene editing holds great promise to modify somatic genomes to ameliorate disease. In silico prediction of homologous sites coupled with biochemical evaluation of possible genomic off-targets may predict genotoxicity risk of individual gene editing reagents. However, standard computational and biochemical methods focus on reference genomes and do not consider the impact of genetic diversity on off-target potential. Here we developed a web application called CRISPRme that explicitly and efficiently integrates human genetic variant datasets with orthogonal genomic annotations to predict and prioritize off-target sites at scale. The method considers both single-nucleotide variants (SNVs) and indels, accounts for bona fide haplotypes, accepts spacer:protospacer mismatches and bulges, and is suitable for personal genome analyses. We tested the tool with a guide RNA (gRNA) targeting the BCL11A erythroid enhancer that has shown therapeutic promise in clinical trials for sickle cell disease (SCD) and β-thalassemia (Frangoul et al. NEJM 2021). We find that the top predicted off-target site is produced by a non-reference allele common in African-ancestry populations (rs114518452, minor allele frequency (MAF) = 4.5%) that introduces a protospacer adjacent motif (PAM) for SpCas9. We validate that SpCas9 generates indels (~9.6% frequency) and chr2 pericentric inversions in a strictly allele-specific manner in edited CD34+ hematopoietic stem/progenitor cells (HSPCs), although a high-fidelity Cas9 variant mitigates this off-target. This report illustrates how population and private genetic variants should be considered as modifiers of genome editing outcomes. We expect that variant-aware off-target assessment will be required for therapeutic genome editing efforts going forward, including both ongoing and future clinical trials, and we provide a powerful approach for comprehensive off-target prediction. CRISPRme is available at crisprme.di.univr.it. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 46 (3) ◽  
pp. 183-187 ◽  
Author(s):  
Bryan Cwik

Design of clinical trials for germline gene editing stretches current accepted standards for human subjects research. Among the challenges involved is a set of issues concerning intergenerational monitoring—long-term follow-up study of subjects and their descendants. Because changes made at the germline would be heritable, germline gene editing could have adverse effects on individuals’ health that can be passed on to future generations. Determining whether germline gene editing is safe and effective for clinical use thus may require intergenerational monitoring. The aim of this paper is to identify and argue for the significance of a set of ethical issues raised by intergenerational monitoring in future clinical trials of germline gene editing. Though long-term, multigenerational follow-up study of this kind is not without precedent, intergenerational monitoring in this context raises unique ethical challenges, challenges that go beyond existing protocols and standards for human subjects research. These challenges will need to be addressed if clinical trials of germline gene editing are ever pursued.


Cartilage ◽  
2019 ◽  
pp. 194760351988032
Author(s):  
Paolo Arrigoni ◽  
Jacob C. Ruprecht ◽  
Dawn A.D. Chasse ◽  
Katherine A. Glass ◽  
Benjamin Andress ◽  
...  

Objectives The utilization of viral vectors to deliver genes of interest directly to meniscus cells and promote long-term modulation of gene expression may prove useful to enhance meniscus repair and regeneration. The objective of this study was to optimize and compare the potential of lentivirus (LV) and adeno-associated virus (AAV) to deliver transgenes to meniscus cells in both intact meniscus tissue and isolated primary cells in monolayer. Design Porcine meniscus tissue explants and primary meniscus cells in monolayer were transduced with LV or self-complementary AAV2 (scAAV2) encoding green fluorescent protein (GFP). Following transduction, explants were enzymatically digested to isolate meniscus cells, and monolayer cells were trypsinized. Isolated cells were analyzed by flow cytometry to determine percent transduction. Results LV and scAAV2 showed a high transduction efficiency in monolayer meniscus cells. scAAV2 was most effective at transducing cells within intact meniscus tissue but the efficiency was less than 20%. Outer zone meniscus cells were more readily transduced by both LV and scAAV2 than the inner zone cells. Higher virus titers and higher cell density resulted in improved transduction efficiency. Polybrene was necessary for the highest transduction efficiency with LV, but it reduced scAAV2 transduction. Conclusions Both LV and scAAV2 efficiently transduce primary meniscus cells but only scAAV2 can modestly transduce cells embedded in meniscus tissue. This work lays the foundation for viral gene transfer to be utilized to deliver bioactive transgenes or gene editing machinery, which can induce long-term and tunable expression of therapeutic proteins from tissue-engineered constructs for meniscus repair and regeneration.


2019 ◽  
Vol 48 (2) ◽  
pp. 517-532 ◽  
Author(s):  
Bin Liu ◽  
Siwei Chen ◽  
Anouk La Rose ◽  
Deng Chen ◽  
Fangyuan Cao ◽  
...  

Abstract Despite the rapid development of CRISPR/Cas9-mediated gene editing technology, the gene editing potential of CRISPR/Cas9 is hampered by low efficiency, especially for clinical applications. One of the major challenges is that chromatin compaction inevitably limits the Cas9 protein access to the target DNA. However, chromatin compaction is precisely regulated by histone acetylation and deacetylation. To overcome these challenges, we have comprehensively assessed the impacts of histone modifiers such as HDAC (1–9) inhibitors and HAT (p300/CBP, Tip60 and MOZ) inhibitors, on CRISPR/Cas9 mediated gene editing efficiency. Our findings demonstrate that attenuation of HDAC1, HDAC2 activity, but not other HDACs, enhances CRISPR/Cas9-mediated gene knockout frequencies by NHEJ as well as gene knock-in by HDR. Conversely, inhibition of HDAC3 decreases gene editing frequencies. Furthermore, our study showed that attenuation of HDAC1, HDAC2 activity leads to an open chromatin state, facilitates Cas9 access and binding to the targeted DNA and increases the gene editing frequencies. This approach can be applied to other nucleases, such as ZFN and TALEN.


2019 ◽  
Vol 16 (4) ◽  
pp. 559-570 ◽  
Author(s):  
Anders Nordgren

AbstractHuman germline gene editing is often debated in hypothetical terms: if it were safe and efficient, on what further conditions would it then be ethically acceptable? This paper takes another course. The key question is: how can scientists reduce uncertainty about safety and efficiency to a level that may justify initiation of first-time clinical trials? The only way to proceed is by well-designed preclinical studies. However, what kinds of investigation should preclinical studies include and what specific conditions should they satisfy in order to be considered well-designed? It is argued that multispecies and multigenerational animal studies are needed as well as human embryo editing without implantation. In order to be possible to translate to first-time clinical trials, animal studies need to satisfy strict conditions of validity. Moreover, embryo studies intended for translation to first-time clinical trials need to correspond to the animal studies in experimental design (with exception of implantation). Only in this way can uncertainty about risk for harm (safety) and prospect of benefit (efficiency) in first-time clinical trials be reduced to a modest level. If uncertainty is not reduced to such a level, first-time clinical trials in germline gene editing should not be initiated.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 692-692
Author(s):  
Naoya Uchida ◽  
Phillip W Hargrove ◽  
Kareem Washington ◽  
Coen J. Lap ◽  
Matthew M. Hsieh ◽  
...  

Abstract Abstract 692 HIV1-based vectors transduce rhesus hematopoietic stem cells poorly due to a species specific block by restriction factors, such as TRIM5αa which target HIV1 capsid proteins. The use of simian immunodeficiency virus (SIV)-based vectors can circumvent this restriction, yet use of this system precludes the ability to directly evaluate HIV1-based lentiviral vectors prior to their use in human clinical trials. To address this issue, we previously developed a chimeric HIV1 vector (χHIV vector) system wherein the HIV1-based lentiviral vector genome is packaged in the context of SIV capsid sequences. We found that this allowed χHIV vector particles to escape the intracellular defense mechanisms operative in rhesus hematopoietic cells as judged by the efficient transduction of both rhesus and human CD34+ cells. Following transplantation of rhesus animals with autologous cell transduced with the χHIV vector, high levels of marking were observed in peripheral blood cells (J Virol. 2009 Jul. in press). To evaluate whether χHIV vectors could transduce rhesus blood cells as efficiently as SIV vectors, we performed a competitive repopulation assay in two rhesus macaques for which half of the CD34+ cells were transduced with the standard SIV vector and the other half with the χHIV vector both at a MOI=50 and under identical transduction conditions. The transduction efficiency for rhesus CD34+ cells before transplantation with the χHIV vector showed lower transduction rates in vitro compared to those of the SIV vector (first rhesus: 41.9±0.83% vs. 71.2±0.46%, p<0.01, second rhesus: 65.0±0.51% vs. 77.0±0.18%, p<0.01, respectively). Following transplantation and reconstitution, however, the χHIV vector showed modestly higher gene marking levels in granulocytes (first rhesus: 12.4% vs. 6.1%, second rhesus: 36.1% vs. 27.2%) and equivalent marking levels in lymphocytes, red blood cells (RBC), and platelets, compared to the SIV vector at one month (Figure). Three to four months after transplantation in the first animal, in vivo marking levels plateaued, and the χHIV achieved 2-3 fold higher marking levels when compared to the SIV vector, in granulocytes (6.9% vs. 2.8%) and RBCs (3.3% vs. 0.9%), and equivalent marking levels in lymphocytes (7.1% vs. 5.1%) and platelets (2.8% vs. 2.5)(Figure). Using cell type specific surface marker analysis, the χHIV vector showed 2-7 fold higher marking levels in CD33+ cells (granulocytes: 5.4% vs. 2.7%), CD56+ cells (NK cells: 6.5% vs. 3.2%), CD71+ cells (reticulocyte: 4.5% vs. 0.6%), and RBC+ cells (3.6% vs. 0.9%), and equivalent marking levels in CD3+ cells (T cells: 4.4% vs. 3.3%), CD4+ cells (T cells: 3.9% vs. 4.6%), CD8+ cells (T cells: 4.2% vs. 3.9%), CD20+ cells (B cells: 7.6% vs. 4.8%), and CD41a+ cells (platelets: 3.5% vs. 2.2%) 4 months after transplantation. The second animal showed a similar pattern with higher overall levels (granulocytes: 32.8% vs. 19.1%, lymphocytes: 24.4% vs. 17.6%, RBCs 13.1% vs. 6.8%, and platelets: 14.8% vs. 16.9%) 2 months after transplantation. These data demonstrate that our χHIV vector can efficiently transduce rhesus long-term progenitors at levels comparable to SIV-based vectors. This χHIV vector system should allow preclinical testing of HIV1-based therapeutic vectors in the large animal model, especially for granulocytic or RBC diseases. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 75 (16) ◽  
pp. 7662-7671 ◽  
Author(s):  
Dongsheng Duan ◽  
Ziying Yan ◽  
Yongping Yue ◽  
Wei Ding ◽  
John F. Engelhardt

ABSTRACT Adeno-associated virus (AAV)-based muscle gene therapy has achieved tremendous success in numerous animal models of human diseases. Recent clinical trials with this vector have also demonstrated great promise. However, to achieve therapeutic benefit in patients, large inocula of virus will likely be necessary to establish the required level of transgene expression. For these reasons, efforts aimed at increasing the efficacy of AAV-mediated gene delivery to muscle have the potential for improving the safety and therapeutic benefit in clinical trials. In the present study, we compared the efficiency of gene delivery to mouse muscle cells for recombinant AAV type 2 (rAAV-2) and rAAV-2cap5 (AAV-2 genomes pseudo-packaged into AAV-5 capsids). Despite similar levels of transduction by these two vectors in undifferentiated myoblasts, pseudotyped rAAV-2cap5 demonstrated dramatically enhanced transduction in differentiated myocytes in vitro (>500-fold) and in skeletal muscle in vivo (>200-fold) compared to rAAV-2. Serotype-specific differences in transduction efficiency did not directly correlate with viral binding to muscle cells but rather appeared to involve endocytic or intracellular barriers to infection. Furthermore, application of this pseudotyped virus in a mouse model of Duchenne's muscular dystrophy also demonstrated significantly improved transduction efficiency. These findings should have a significant impact on improving rAAV-mediated gene therapy in muscle.


2002 ◽  
Vol 364 (3) ◽  
pp. 747-753 ◽  
Author(s):  
Guglielmo R.D. VILLANI ◽  
Antonia FOLLENZI ◽  
Borghina VANACORE ◽  
Carmela di DOMENICO ◽  
Luigi NALDINI ◽  
...  

Mucopolysaccharidosis type IIIB (MPS IIIB; or Sanfilippo syndrome type B) is a lysosomal disease, due to glycosaminoglycan storage caused by mutations on the α-N-acetylglucosaminidase (NAGLU) gene. The disease is characterized by neurological dysfunction but relatively mild somatic manifestations. No effective treatment is available for affected patients. In the present study, we evaluated the role of a lentiviral vector as the transducing agent of NAGLU cDNA in MPS IIIB fibroblasts. The vector expressed high transduction efficiency and high levels of enzymic activity, 20-fold above normal levels, persisting for at least 2 months. PCR experiments confirmed the integration of the viral vector into the target genome. The NAGLU activity restored by virus infection was sufficient to normalize glycosaminoglycan accumulation, which is directly responsible for the disease phenotype. Metabolic labelling experiments on transduced fibroblasts exhibited, in the medium and in cellular lysates, polypeptide forms of 84 and 80kDa respectively related to the precursor and mature forms of the enzyme. The enzyme secreted by transduced MPS IIIB fibroblasts was endocytosed in deficient cells by the mannose 6-phosphate system. Thus we show that lentiviral vectors may provide a therapeutic approach for the treatment of MPS IIIB disease.


Sign in / Sign up

Export Citation Format

Share Document