scholarly journals Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection.

2020 ◽  
Author(s):  
Tirthankar Koley ◽  
Shivani Madaan ◽  
Sanghati Roy Chowdhury ◽  
Manoj Kumar ◽  
Punit Kaur ◽  
...  

Abstract The pandemic COVID-19 caused by a novel coronavirus SARS-CoV-2 spread worldwide as a new public health emergency. The SARS-CoV-2 infects humans by binding to glycosylated ACE2 receptor present in the inner lining of the lungs, heart, intestine and kidney. The COVID spike 2 protein recognizes the ACE2 receptor at the N-terminal helices of the metalloprotease domain. The residues Gln24, Thr27, Lys31, His34, Glu37, Asp38, Tyr41, Gln42 from helix α1; Leu79, Met82, Tyr83 from helix α2 and Gln325, Glu329, Asn330, Lys353 from loop connecting β4 and β5 strands form a concave surface surrounded by four glycosylation sites Asn53, Asn90, Asn103 and Asn322 form interactions with the spike protein. However, no significant data on the susceptibility of animals for infection or transmission. Therefore, we performed the comparative protein-protein docking analysis using the crystal structure of spike protein and homology models of the ACE2 receptor from 16 commonly found mammalian species to understand the potential mode of spike binding. Our comprehensive sequence and structure-based interaction analysis revealed the natural substitution of amino acid residues Gln24, His34, Phe40 and Met82 in the N-terminal α1 and α2 helices results in loss of crucial network of hydrogen-bonded and hydrophobic interactions with spike 2 RBD domain. Besides, the absence of N-linked glycosylation site Asn103 in other mammals further reduces the binding affinity between spike and ACE2 receptor. Hence, these changes explain the differences in the susceptibility and host pathogenesis in other mammalian species.

2020 ◽  
Author(s):  
Abhisek Dwivedy ◽  
Krushna Chandra Murmu ◽  
Mohammed Ahmad ◽  
Punit Prasad ◽  
Bichitra Kumar Biswal ◽  
...  

AbstractA novel disease, COVID-19, is sweeping the world since end of 2019. While in many countries, the first wave is over, but the pandemic is going through its next phase with a significantly higher infectability. COVID-19 is caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that seems to be more infectious than any other previous human coronaviruses. To understand any unique traits of the virus that facilitate its entry into the host, we compared the published structures of the viral spike protein of SARS-CoV-2 with other known coronaviruses to determine the possible evolutionary pathway leading to the higher infectivity. The current report presents unique information regarding the amino acid residues that were a) conserved to maintain the binding with ACE2 (Angiotensin-converting enzyme 2), and b) substituted to confer an enhanced binding affinity and conformational flexibility to the SARS-CoV-2 spike protein. The present study provides novel insights into the evolutionary nature and molecular basis of higher infectability and perhaps the virulence of SARS-CoV-2.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Santosh Kumar Singh ◽  
Shailesh Singh ◽  
Rajesh Singh

Abstract Background Infections by the SARS-CoV-2 virus causing COVID-19 are presently a global emergency. The current vaccination effort may reduce the infection rate, but strain variants are emerging under selection pressure. Thus, there is an urgent need to find drugs that treat COVID-19 and save human lives. Hence, in this study, we identified phytoconstituents of an edible vegetable, Bitter melon (Momordica charantia), that affect the SARS-CoV-2 spike protein. Methods Components of Momordica charantia were tested to identify the compounds that bind to the SARS-CoV-2 spike protein. An MTiOpenScreen web-server was used to perform docking studies. The Lipinski rule was utilized to evaluate potential interactions between the drug and other target molecules. PyMol and Schrodinger software were used to identify the hydrophilic and hydrophobic interactions. Surface plasmon resonance (SPR) was employed to assess the interaction between an extract component (erythrodiol) and the spike protein. Results Our in-silico evaluations showed that phytoconstituents of Momordica charantia have a low binding energy range, -5.82 to -5.97 kcal/mol. A docking study revealed two sets of phytoconstituents that bind at the S1 and S2 domains of SARS-CoV-2. SPR showed that erythrodiol has a strong binding affinity (KD = 1.15 μM) with the S2 spike protein of SARS-CoV-2. Overall, docking, ADME properties, and SPR displayed strong interactions between phytoconstituents and the active site of the SARS-CoV-2 spike protein. Conclusion This study reveals that phytoconstituents from bitter melon are potential agents to treat SARS-CoV-2 viral infections due to their binding to spike proteins S1 and S2.


Author(s):  
Prashant Pradhan ◽  
Ashutosh Kumar Pandey ◽  
Akhilesh Mishra ◽  
Parul Gupta ◽  
Praveen Kumar Tripathi ◽  
...  

AbstractWe are currently witnessing a major epidemic caused by the 2019 novel coronavirus (2019-nCoV). The evolution of 2019-nCoV remains elusive. We found 4 insertions in the spike glycoprotein (S) which are unique to the 2019-nCoV and are not present in other coronaviruses. Importantly, amino acid residues in all the 4 inserts have identity or similarity to those in the HIV-1 gp120 or HIV-1 Gag. Interestingly, despite the inserts being discontinuous on the primary amino acid sequence, 3D-modelling of the 2019-nCoV suggests that they converge to constitute the receptor binding site. The finding of 4 unique inserts in the 2019-nCoV, all of which have identity /similarity to amino acid residues in key structural proteins of HIV-1 is unlikely to be fortuitous in nature. This work provides yet unknown insights on 2019-nCoV and sheds light on the evolution and pathogenicity of this virus with important implications for diagnosis of this virus.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1152-D1159 ◽  
Author(s):  
Ting-Fu Chen ◽  
Yu-Chuan Chang ◽  
Yi Hsiao ◽  
Ko-Han Lee ◽  
Yu-Chun Hsiao ◽  
...  

Abstract The current state of the COVID-19 pandemic is a global health crisis. To fight the novel coronavirus, one of the best-known ways is to block enzymes essential for virus replication. Currently, we know that the SARS-CoV-2 virus encodes about 29 proteins such as spike protein, 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), Papain-like protease (PLpro), and nucleocapsid (N) protein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) for viral entry and transmembrane serine protease family member II (TMPRSS2) for spike protein priming. Thus in order to speed up the discovery of potential drugs, we develop DockCoV2, a drug database for SARS-CoV-2. DockCoV2 focuses on predicting the binding affinity of FDA-approved and Taiwan National Health Insurance (NHI) drugs with the seven proteins mentioned above. This database contains a total of 3,109 drugs. DockCoV2 is easy to use and search against, is well cross-linked to external databases, and provides the state-of-the-art prediction results in one site. Users can download their drug-protein docking data of interest and examine additional drug-related information on DockCoV2. Furthermore, DockCoV2 provides experimental information to help users understand which drugs have already been reported to be effective against MERS or SARS-CoV. DockCoV2 is available at https://covirus.cc/drugs/.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 428 ◽  
Author(s):  
Jiahua He ◽  
Huanyu Tao ◽  
Yumeng Yan ◽  
Sheng-You Huang ◽  
Yi Xiao

The outbreak of a novel coronavirus, which was later formally named the severe acute respiratory coronavirus 2 (SARS-CoV-2), has caused a worldwide public health crisis. Previous studies showed that SARS-CoV-2 is highly homologous to SARS-CoV and infects humans through the binding of the spike protein to ACE2. Here, we have systematically studied the molecular mechanisms of human infection with SARS-CoV-2 and SARS-CoV by protein-protein docking and MD simulations. It was found that SARS-CoV-2 binds ACE2 with a higher affinity than SARS-CoV, which may partly explain that SARS-CoV-2 is much more infectious than SARS-CoV. In addition, the spike protein of SARS-CoV-2 has a significantly lower free energy than that of SARS-CoV, suggesting that SARS-CoV-2 is more stable and may survive a higher temperature than SARS-CoV. This provides insights into the evolution of SARS-CoV-2 because SARS-like coronaviruses have originated in bats. Our computation also suggested that the RBD-ACE2 binding for SARS-CoV-2 is much more temperature-sensitive than that for SARS-CoV. Thus, it is expected that SARS-CoV-2 would decrease its infection ability much faster than SARS-CoV when the temperature rises. These findings would be beneficial for the disease prevention and drug/vaccine development of SARS-CoV-2.


Author(s):  
Wei He ◽  
Wenhui Zhang ◽  
Zhenhua Chu ◽  
Yu Li

The aim of this paper is to explore the mechanism of the change in oestrogenic activity of PCBs molecules before and after modification by designing new PCBs derivatives in combination with molecular docking techniques through the constructed model of oestrogenic activity of PCBs molecules. We found that the weakened hydrophobic interaction between the hydrophobic amino acid residues and hydrophobic substituents at the binding site of PCB derivatives and human oestrogen receptor alpha (hERα) was the main reason for the weakened binding force and reduced anti-oestrogenic activity. It was consistent with the information that the hydrophobic field displayed by the 3D contour maps in the constructed oestrogen activity CoMSIA model was one of the main influencing force fields. The hydrophobic interaction between PCB derivatives and oestrogen-active receptors was negatively correlated with the average distance between hydrophobic substituents and hydrophobic amino acid residues at the hERα-binding site, and positively correlated with the number of hydrophobic amino acid residues. In other words, the smaller the average distance between the hydrophobic amino acid residues at the binding sites between the two and the more the number of them, and the stronger the oestrogen activity expression degree of PCBS derivative molecules. Therefore, hydrophobic interactions between PCB derivatives and the oestrogen receptor can be reduced by altering the microenvironmental conditions in humans. This reduces the ability of PCB derivatives to bind to the oestrogen receptor and can effectively modulate the risk of residual PCB derivatives to produce oestrogenic activity in humans.


3 Biotech ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Tirthankar Koley ◽  
Shivani Madaan ◽  
Sanghati Roy Chowdhury ◽  
Manoj Kumar ◽  
Punit Kaur ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 57
Author(s):  
Zhi-Ling Zhu ◽  
Xiao-Dan Qiu ◽  
Shuo Wu ◽  
Yi-Tong Liu ◽  
Ting Zhao ◽  
...  

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.


2021 ◽  
Author(s):  
Qingyu Zhao ◽  
Yanan Gao ◽  
Min Xiao ◽  
Xuefei Huang ◽  
Xuanjun Wu

For prevention of the coronavirus disease 2019 caused by the novel coronavirus SARS-CoV-2, an effective vaccine is critical. Herein, several potential peptide epitopes from the spike protein of SARS-CoV-2 have...


Sign in / Sign up

Export Citation Format

Share Document