scholarly journals Spatiotemporal Heterogeneities and Driving Factors of Water Quality and Trophic State of a Typical Urban Shallow Lake (Taihu, China)

Author(s):  
Yonggui Wang ◽  
Yanqi Guo ◽  
Yanxin Zhao ◽  
Lunche Wang ◽  
Yan Chen ◽  
...  

Abstract Water quality deterioration and eutrophication of urban shallow lakes are global ecological problems with increasing concern and greater environmental efforts. In this study, spatiotemporal changes of water quality and eutrophication over 2015-2019 in Lake Taihu, were assessed using the monthly time series of 7 water quality parameters measured at 17 sites. The whole lake was divided into 7 sub-lakes and trophic condition was evaluated by trophic level index (TLI). Taihu had poor water quality overall which was mainly astricted by the total nitrogen (TN) and the total phosphorus (TP) and maintained a light-eutropher state, but it had improved in the last five years. It is found that all nutrient parameters reached relatively higher concentrations in the northwestern and northern Taihu with combined cluster analysis and spatial interpolation methods. Meiliang Bay was the most polluted and nutrient-rich area. Mann-Kendall test highlighted the fact that the TP and chlorophyll-a (Chl-a) concentrations increased significantly while the TN and five-day biochemical oxygen demand (BOD5) decreased. The nutrient loading input from the northwestern areas with high human activity and the geomorphological characteristic of the northern closed bays were the main contributors to the spatial heterogeneity in water quality. The main driving force of N pollution was the declining river inflow N loading. And P pollution was affected more by accumulated endogenous pollution, decline aquatic plants area, as well as closely linked with algae biomass. Further water pollution and eutrophication mitigation of Taihu should focus on the limitation of algae and those heavily polluted closed bays.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Md Mamun ◽  
Ji Yoon Kim ◽  
Kwang-Guk An

Paldang Reservoir, located in the Han River basin in South Korea, is used for drinking water, fishing, irrigation, recreation, and hydroelectric power. Therefore, the water quality of the reservoir is of great importance. The main objectives of this study were to evaluate spatial and seasonal variations of surface water quality in the reservoir using multivariate statistical techniques (MSTs) along with the Trophic State Index (TSI) and Trophic State Index deviation (TSID). The empirical relationships among nutrients (total phosphorus, TP; total nitrogen, TN), chlorophyll-a (CHL-a), and annual variations of water quality parameters were also determined. To this end, 12 water quality parameters were monitored monthly at five sites along the reservoir from 1996 to 2019. Most of the parameters (all except pH, dissolved oxygen (DO), and total coliform bacteria (TCB)) showed significant spatial variations, indicating an influence of anthropogenic activities. Principal component analysis combined with factor analysis (PCA/FA) suggested that the parameters responsible for water quality variations were primarily correlated with nutrients and organic matter (anthropogenic), suspended solids (both natural and anthropogenic), and ionic concentrations (both natural and anthropogenic). Stepwise spatial discriminant analysis (DA) identified water temperature (WT), DO, electrical conductivity (EC), chemical oxygen demand (COD), the ratio of biological oxygen demand (BOD) to COD (BOD/COD), TN, TN:TP, and TCB as the parameters responsible for variations among sites, and seasonal stepwise DA identified WT, BOD, and total suspended solids (TSS) as the parameters responsible for variations among seasons. COD has increased (R2 = 0.63, p < 0.01) in the reservoir since 1996, suggesting that nonbiodegradable organic loading to the water body is rising. The empirical regression models of CHL-a-TP (R2 = 0.45) and CHL-a-TN (R2 = 0.27) indicated that TP better explained algal growth than TN. The mean TSI values for TP, CHL-a, and Secchi depth (SD) indicated a eutrophic state of the reservoir for all seasons and sites. Analysis of TSID suggested that blue-green algae dominated the algal community in the reservoir. The present results show that a significant increase in algal chlorophyll occurs during spring in the reservoir. Our findings may facilitate the management of Paldang Reservoir.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroshi Sakai ◽  
Aimin Hao ◽  
Yasushi Iseri ◽  
Song Wang ◽  
Takahiro Kuba ◽  
...  

The occurrence and distribution of microcystins were investigated in Lake Taihu, the third largest lake in China. An extensive survey, larger and broader in scale than previous studies, was conducted in summer 2010. The highest microcystin concentration was found at southern part of Taihu, which was newly included in this survey. In northern coastal areas, total cellular concentrations of 20 to 44 μg/L were observed. In northern offshore waters, levels were up to 4.8 μg/L. Microcystin occurrence was highly correlated with chemical oxygen demand, turbidity, and chlorophyll-a. Extracellular/total cellular microcystin (E/T) ratios were calculated and compared to other water quality parameters. A higher correlation was found using E/T ratios than original microcystin values. These results show that algal blooms are having a severe impact on Lake Taihu, and further and extensive monitoring and research are required to suppress blooms effectively.


2018 ◽  
Vol 19 (5) ◽  
pp. 1287-1294 ◽  
Author(s):  
Nuanchan Singkran ◽  
Pitchaya Anantawong ◽  
Naree Intharawichian ◽  
Karika Kunta

Abstract Land use influences and trends in water quality parameters were determined for the Chao Phraya River, Thailand. Dissolved oxygen (DO), biochemical oxygen demand (BOD), and nitrate-nitrogen (NO3-N) showed significant trends (R2 ≥ 0.5) across the year, while total phosphorus (TP) and faecal coliform bacteria (FCB) showed significant trends only in the wet season. DO increased, but BOD, NO3-N, and TP decreased, from the lower section (river kilometres (rkm) 7–58 from the river mouth) through the middle section (rkm 58–143) to the upper section (rkm 143–379) of the river. Lead and mercury showed weak/no trends (R2 &lt; 0.5). Based on the river section, major land use groups were a combination of urban and built-up areas (43%) and aquaculture (21%) in the lower river basin, paddy fields (56%) and urban and built-up areas (21%) in the middle river basin, and paddy fields (44%) and other agricultural areas (34%) in the upper river basin. Most water quality and land use attributes had significantly positive or negative correlations (at P ≤ 0.05) among each other. The river was in crisis because of high FCB concentrations. Serious measures are suggested to manage FCB and relevant human activities in the river basin.


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2013 ◽  
Vol 11 (3) ◽  
pp. 199-210 ◽  
Author(s):  
Milan Gocic ◽  
Slavisa Trajkovic

The data of 12 water quality parameters have been daily monitored at the Nis station on the Nisava River during 2000-2004. The trend analysis was performed on monthly, seasonal and annual time series using the Mann-Kendall test, the Spearman?s Rho test and the linear regression at the 5% significance level. The monthly results showed that significant trends were found only in pH, total hardness, Ca and SO4 data. The results in seasonal series indicated that the significant trends were detected in pH, total hardness, Cl, Ca and SO4 data. In annual series, the trends were insignificant at the 5% significance level.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
V Strokal ◽  
◽  
A Kovpak ◽  

Novelties of this study include a synthesis of water quality parameters for the upstream sub-basin of the Dnieper River. This upstream sub-basin includes the Desna River. The synthesis revels new insights on the sources of the water pollution and the status of the water quality for different purposes such as drinking, aquaculture and recreation. The main research objective was to identify the main sources of water pollution and how those sources could decrease the water quality. As a result of our analysis, we conclude the following. The levels of ammonium-nitrogen and nitrite-nitrogen in the Desna River (upstream sub-basin) are by 2-43 times and up to 53 times higher than the water quality thresholds, respectively. This poses a risk for recreational activities since too much nutrients often lead to blooms of harmful algae. We also find an increased level of biological oxygen demand in the river for drinking purposes. For aquaculture, decreased levels of dissolved oxygen are found. Climate change has an impact on water quality. For example, extreme floods caused by too much precipitation can bring pollutants to nearby waters. Monthly average temperature has increased by +2.7 degrees contributing to increased microbiological processes that could stimulate blooms of harmful algae. Main sources of water pollution are sewage discharges in cities, agricultural runoff and erosion activities after floods.


2020 ◽  
Vol 143 ◽  
pp. 02007
Author(s):  
Li Xiaojuan ◽  
Huang Mutao ◽  
Li Jianbao

In this paper, combined with water quality sampling data and Landsat8 satellite remote sensing image data, the inversion model of Chl-a and TN water quality parameter concentration was constructed based on machine learning algorithm. After the verification and evaluation of the inversion results of the test samples, Chl-a TN inversion model with high correlation between model test results and measured data was selected to participate in remote sensing inversion ensemble modelling of water quality parameters. Then, the ensemble remote sensing inversion model of water quality parameters was established based on entropy weight method and error analysis. By applying the idea of ensemble modelling to remote sensing inversion of water quality parameters, the advantages of different models can be integrated and the precision of water quality parameters inversion can be improved. Through the evaluation and comparative analysis of the model results, the entropy weight method can improve the inversion accuracy to some extent, but the improvement space is limited. In the verification of the two methods of ensemble modelling based on error analysis, compared with the optimal results of a single model, the determination coefficient (R2) of Chlorophyll a and TN concentration inversion results was increased from 0.9288 to 0.9313 and from 0.8339 to 0.8838, and the root mean square error was decreased from 14.2615 μ/L to 10.4194 μ/L and from1.1002mg/L to 0.8621mg/L. At the same time, with the increase of the number of models involved in the set modelling, the inversion accuracy is higher.


2016 ◽  
Vol 9 (1) ◽  
pp. 117-122 ◽  
Author(s):  
K Fatema ◽  
WMW Omar ◽  
MM Isa ◽  
A Omar

Influence of water quality parameters on zooplankton abundance and biomass in the Merbok estuary Malaysia were investigated. Twenty four hours sampling were conducted at station 1, 3 and 5 from 12th November (spring tide) to 3rd December (neap tide) 2011 on weekly interval. Results showed that water quality parameters varied with the following ranges: conductivity (10.00-315.00?S-1cm), transparency (25.50-154.00 cm), light intensity (53.5-1959.00 lux), TSS (20-70 mg-1L), BOD (0.25-3.46 mg-1L) and chl a (0.1-1.46 ?g-1L). The highest zooplankton abundance was found at Station 5 (176×103) and (230×103) ind-3m and the lowest was at station 1(5.3×103) and (3.4 ×103) ind-3m during spring and neap tide. Zooplankton biomass varied from 0.04 to 0.096 gm-3m. Spearman’s rank correlation analysis results showed that there was a correlation among zooplankton abundance and conductivity, transparency, TSS, BOD, and biomass except chl and light intensity. Mann-Whitney U test result showed that water quality parameters, zooplankton abundance and zooplankton biomass were significantly different between spring and neap tides.J. Environ. Sci. & Natural Resources, 9(1): 117-122 2016


Drones ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Juan G. Arango ◽  
Robert W. Nairn

The purpose of this study was to create different statistically reliable predictive algorithms for trophic state or water quality for optical (total suspended solids (TSS), Secchi disk depth (SDD), and chlorophyll-a (Chl-a)) and non-optical (total phosphorus (TP) and total nitrogen (TN)) water quality variables or indicators in an oligotrophic system (Grand River Dam Authority (GRDA) Duck Creek Nursery Ponds) and a eutrophic system (City of Commerce, Oklahoma, Wastewater Lagoons) using remote sensing images from a small unmanned aerial system (sUAS) equipped with a multispectral imaging sensor. To develop these algorithms, two sets of data were acquired: (1) In-situ water quality measurements and (2) the spectral reflectance values from sUAS imagery. Reflectance values for each band were extracted under three scenarios: (1) Value to point extraction, (2) average value extraction around the stations, and (3) point extraction using kriged surfaces. Results indicate that multiple variable linear regression models in the visible portion of the electromagnetic spectrum best describe the relationship between TSS (R2 = 0.99, p-value = <0.01), SDD (R2 = 0.88, p-value = <0.01), Chl-a (R2 = 0.85, p-value = <0.01), TP (R2 = 0.98, p-value = <0.01) and TN (R2 = 0.98, p-value = <0.01). In addition, this study concluded that ordinary kriging does not improve the fit between the different water quality parameters and reflectance values.


2010 ◽  
Vol 3 (1) ◽  
pp. 151 ◽  
Author(s):  
S. Islam ◽  
T. Rasul ◽  
J. Bin Alam ◽  
M. A. Haque

The Titas River, a trans-boundary river of Bangladesh flows almost the entire Brahmanbaria district, consumes a huge amount of sewage, agricultural discharges and runoff, waste produced from human excreta, discharges of two oil mills and contaminants from other minor sources. A study is conducted to find the water quality status of the river during the period from July 2008 to June 2009 and by using National Sanitation Foundation (NSF) water quality index, the probable use of this water is predicted. This work consists of laboratory tests for the evaluation of some water quality parameters of the Titas and to identify its probable use in various purposes. The results of the laboratory tests and NSF water quality index suggest that the water can be used for recreation, pisciculture and irrigation purposes but requires treatment before using for drinking.Keywords: Water pollution; Faecal coliform; Dissolved oxygen (DO); Biochemical oxygen demand (BOD).© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.6170                 J. Sci. Res. 3 (1), 151-159 (2011)


Sign in / Sign up

Export Citation Format

Share Document