scholarly journals ASSOCIATION BETWEEN THE RS801460-POLYMORPHISM IN THE SRA1 GENE AND THYROID NODULES AMONG UKRAINIAN WOMEN WITH PROLIFERATIVE TYPE OF BENIGN BREAST DYSPLASIA WITHOUT ATYPIA

2020 ◽  
Vol 8 (4) ◽  
pp. 377-382
Author(s):  
I.M. Lukavenko ◽  
A.V. Kolnoguz ◽  
M.O. Kyrychenko ◽  
O.V. Ataman ◽  
V.Yu. Harbuzova

As it was revealed, the greater part of the human genome is represented by non-coding sequences. They also include long non-coding RNAs (lncRNAs). SRA1 is one of its representatives. This lncRNA affects steroid hormones receptors by activating their transcriptional activity. Thereby, SRA1 can be involved in pathogenesis of steroid-responsive tissues tumors.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Swapna Vidhur Daulatabad ◽  
Rajneesh Srivastava ◽  
Sarath Chandra Janga

Abstract Background With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. Results We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed’s abstract retrieval engine and NCBO’s recommender annotation system. Lantern’s annotations were benchmarked against lncRNAdb’s manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. Conclusions Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1208
Author(s):  
Yali Lu ◽  
Xuechao Wan ◽  
Wenhua Huang ◽  
Lu Zhang ◽  
Jun Luo ◽  
...  

The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO’s promotion effect on AR.


2018 ◽  
Vol 19 (7) ◽  
pp. 2120 ◽  
Author(s):  
Alessandro La Ferlita ◽  
Rosalia Battaglia ◽  
Francesca Andronico ◽  
Salvatore Caruso ◽  
Antonio Cianci ◽  
...  

The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.


2019 ◽  
Author(s):  
Jason Talkish ◽  
Haller Igel ◽  
Rhonda J. Perriman ◽  
Lily Shiue ◽  
Sol Katzman ◽  
...  

AbstractIntrons are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under selection. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.Author SummaryThe protein coding information in eukaryotic genes is broken by intervening sequences called introns that are removed from RNA during transcription by a large protein-RNA complex called the spliceosome. Where introns come from and how the spliceosome contributes to genome evolution are open questions. In this study, we find more than 150 new places in the yeast genome that are recognized by the spliceosome and spliced out as introns. Since they appear to have arisen very recently in evolution by sequence drift and do not appear to contribute to gene expression or its regulation, we call these protointrons. Protointrons are found in both protein-coding and non-coding RNAs and are not efficiently removed by the splicing machinery. Although most protointrons are not conserved, a few are spliced more efficiently, and are located where they might begin to play functional roles in gene expression, as predicted by the proposed process of intronization. The challenge now is to understand how spontaneously appearing splicing events like protointrons might contribute to the creation of new genes, new genetic controls, and new protein isoforms as genomes evolve.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 591-591 ◽  
Author(s):  
Fabienne Brenet ◽  
Michelle Moh ◽  
Patricia Funk ◽  
Daoqui You ◽  
Agnes J. Viale ◽  
...  

Abstract Abstract 591 The human genome is adorned with methylated cytosine residues that function in the epigenetic guidance of cellular differentiation and development. Cellular interpretation of this epigenetic mark is incompletely understood and tissue specific patterns of DNA methylation vary with age, can be altered by environmental factors, and are often abnormal in human disease. Aberrant DNA methylation is a common means by which tumor suppressor genes (TSGs) are inactivated during carcinogenesis (Baylin, Herman, Graff, Vertino and Issa 1998; Laird and Jaenisch 1996; Singal and Ginder 1999). Unlike genetic mechanisms of gene inactivation, such as gene deletion and mutation, the epigenetic silencing of TSGs by promoter hypermethylation is potentially reversible. This has led to the broad interest of cancer biologists in the study of DNA methylation. Method: We developed a method for genome-wide analysis of DNA methylation by using a recombinant protein containing a methyl-CpG binding domain (MBD) to enrich methylated DNA fragments that are then identified by massively parallel sequencing using the SOLiD sequencer (ABI). We generated ∼15-million sequence tags per specimen and wrote custom R-language algorithms to develop an analytical platform with which to study DNA methylation. We used this technology to study the pharmacodynamics of DNA methylation in acute myelogenous leukemia (AML) cells following exposure to the hypomethylating agent, 5-aza-2'-deoxycytidine (decitabine). We compared DNA methylation patterns before and after decitabine treatment with transcriptional activity revealed by microarrays (Illumina) and quantitative PCR. We found that Sequence Tag Analysis of Methylation Profiles (STAMP) permits highly reproducible, genome-wide identification of DNA methylation density at near base-pair resolution. This method is cost effective and can be extended, without modification, to any mapped genome. Results: STAMP analysis revealed patterned DNA methylation at all scales across the genome: from whole chromosomes to individual genes. We found that densely methylated elements (DMEs) of the human genome are often highly conserved or closely associated with gene coding regions and promoters. We identified distinct patterns of DNA methylation surrounding the transcription start and termination sites of all genes. These methylation patterns are associated with transcriptional activity of neighboring genes. Interestingly, genes with a densely methylated transcription start site (TSS) have little methylation in the surrounding regions whereas genes with little or no methylation at the TSS have disproportionately higher methylation within their gene bodies. In untreated cells, we detected ∼75,000 DMEs (false discovery rate <0.01) with a median length ∼600 bp and with 75% being less than 960bp. The longest DMEs extend up to ∼24000 bp and are composed of microsatellite clusters. The majority of the DMEs are not classic CpG islands (CGI) but are GC-rich regions (median 57% GC) with a greater than expected incidence of CpG dinucleotides (median CpG observed/expected 0.49): results that suggest the definition of a CGI excludes the majority of the methylated human genome. Although the pattern of DNA methylation was qualitatively similar in cells treated with decitabine, we found that the density of methylation was generally lower and fewer DMEs (∼50,000) were identified. Decitabine treatment led to increased expression of ∼800 genes involved in cell cycle control, apoptosis and cellular differentiation whereas the ∼50 genes with downregulated expression were most commonly involved in RNA metabolism. Distinct pre-treatment DNA methylation patterns were associated with, and tended to predict, the transcriptional activity following treatment with decitabine. Summary: We developed and utilized a powerful new technology to uncover the genome-wide effects of decitabine on DNA methylation patterns in AML. We found that although decitabine induces genome-wide DNA hypomethylation, its effect on transcription depends upon the pattern of DNA methylation prior to treatment. The STAMP methodology leverages the power and flexibility of massively parallel sequencing with the high selectivity of the MBD for its natural ligand, methyl-CpG. This assay permits robust, unbiased and highly sensitive whole-genome identification of methylated DNA segments. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Vu Hong Loan Nguyen ◽  
Rebecca Hough ◽  
Stefanie Bernaudo ◽  
Chun Peng

AbstractEpithelial ovarian cancer (EOC) is the deadliest female malignancy. The Wnt/β-catenin pathway plays critical roles in regulating embryonic development and physiological processes. This pathway is tightly regulated to ensure its proper activity. In the absence of Wnt ligands, β-catenin is degraded by a destruction complex. When the pathway is stimulated by a Wnt ligand, β-catenin dissociates from the destruction complex and translocates into the nucleus where it interacts with TCF/LEF transcription factors to regulate target gene expression. Aberrant activation of this pathway, which leads to the hyperactivity of β-catenin, has been reported in ovarian cancer. Specifically, mutations of CTNNB1, AXIN, or APC, have been observed in the endometrioid and mucinous subtypes of EOC. In addition, upregulation of the ligands, abnormal activation of the receptors or intracellular mediators, disruption of the β-catenin destruction complex, inhibition of the association of β-catenin/E-cadherin on the cell membrane, and aberrant promotion of the β-catenin/TCF transcriptional activity, have all been reported in EOC, especially in the high grade serous subtype. Furthermore, several non-coding RNAs have been shown to regulate EOC development, in part, through the modulation of Wnt/β-catenin signalling. The Wnt/β-catenin pathway has been reported to promote cancer stem cell self-renewal, metastasis, and chemoresistance in all subtypes of EOC. Emerging evidence also suggests that the pathway induces ovarian tumor angiogenesis and immune evasion. Taken together, these studies demonstrate that the Wnt/β-catenin pathway plays critical roles in EOC development and is a strong candidate for the development of targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document