scholarly journals AC016745.3 Regulates the Transcription of AR Target Genes by Antagonizing NONO

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1208
Author(s):  
Yali Lu ◽  
Xuechao Wan ◽  
Wenhua Huang ◽  
Lu Zhang ◽  
Jun Luo ◽  
...  

The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO’s promotion effect on AR.

2019 ◽  
Vol 28 (14) ◽  
pp. 2319-2329 ◽  
Author(s):  
Kohei Hamanaka ◽  
Atsushi Takata ◽  
Yuri Uchiyama ◽  
Satoko Miyatake ◽  
Noriko Miyake ◽  
...  

AbstractDisorders of sex development (DSDs) are defined as congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. In many DSD cases, genetic causes remain to be elucidated. Here, we performed a case–control exome sequencing study comparing gene-based burdens of rare damaging variants between 26 DSD cases and 2625 controls. We found exome-wide significant enrichment of rare heterozygous truncating variants in the MYRF gene encoding myelin regulatory factor, a transcription factor essential for oligodendrocyte development. All three variants occurred de novo. We identified an additional 46,XY DSD case of a de novo damaging missense variant in an independent cohort. The clinical symptoms included hypoplasia of Müllerian derivatives and ovaries in 46,XX DSD patients, defective development of Sertoli and Leydig cells in 46,XY DSD patients and congenital diaphragmatic hernia in one 46,XY DSD patient. As all of these cells and tissues are or partly consist of coelomic epithelium (CE)-derived cells (CEDC) and CEDC developed from CE via proliferaiton and migration, MYRF might be related to these processes. Consistent with this hypothesis, single-cell RNA sequencing of foetal gonads revealed high expression of MYRF in CE and CEDC. Reanalysis of public chromatin immunoprecipitation sequencing data for rat Myrf showed that genes regulating proliferation and migration were enriched among putative target genes of Myrf. These results suggested that MYRF is a novel causative gene of 46,XY and 46,XX DSD and MYRF is a transcription factor regulating CD and/or CEDC proliferation and migration, which is essential for development of multiple organs.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Giuseppe Straface ◽  
Andrea Flex ◽  
Federico Biscetti ◽  
Eleonora Gaetani ◽  
Giovanni Pecorini ◽  
...  

Background: Cerebellar hypoxia is responsible for important aspects of cognitive deterioration and motor disturbances in neurological disorders, such as stroke, vascular dementia, and neurodegeneration. In the cerebellum, VEGF is significantly upregulated after hypoxia and is able to induce angiogenesis, reduce neuronal apoptosis, and regulate neuronal differentiation, proliferation, and migration. But, VEGF is not sufficient to provide neuroprotection. A crucial role is played by growth associated protein-43 (GAP43), for which important activities have been described. The purpose of this study was to investigate the role of the developmental Sonic hedgehog (Shh) signaling pathway in postnatal hypoxic cerebellum and its relationship with VEGF and GAP43 expression. Methods: We used adult C57BL/6J mice, ptc1-lacZ mice, and GAP43−/− mice for these experiments. Ptc1-lacZ mice carry a non-disruptive insertion of the lacZ gene under the control of the ptc1 promoter. Ptc1 is a downstream-transcriptional target of Shh and its upregulation indicates activation of the Shh pathway. Mice were exposed to systemic normobaric hypoxia (6%O 2 ) for 6 hours and the expression of Shh, Ptc1, VEGF, and GAP43 were investigated. Results: After exposure to hypoxia, Shh-positive staining was detected in Purkinje cells (PCs). The same cells were also lacZ(ptc1)-positive, indicating that PCs are both Shh-producing and -responding elements. Also the cells of the internal granular layer (IGL) were lacZ(ptc1)-positive, indicating that these cells are Shh-responsive. LacZ(ptc1)-positive IGL cells were also immunopositive for VEGF and GAP-43. We also found that ptc1 expression is lost in PCs of GAP43−/− mice, indicating that Shh requires GAP43 to activate its downstream target genes in PCs. Finally, when cultures enriched in granular cells were stimulated with Shh recombinant protein, GAP43 phosphorylation was increased. This effect was inhibited by Shh-inhibitor cyclopamine. Conclusions: This is the first time that hypoxia is reported to activate the Shh pathway in the adult. Our data suggest that the Shh pathway might be important for the cerebellar response to hypoxia, through interactions with VEGF and GAP43.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Luke H Hoeppner ◽  
Resham Bhattacharya ◽  
Ying Wang ◽  
Ramcharan Singh Angom ◽  
Enfeng Wang ◽  
...  

Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGFR-2 to control vasculogenesis and angiogenesis. Dysregulation of these physiological processes contributes to the pathologies of heart disease, stroke, and cancer. Protein kinase D (PKD) plays a crucial role in the regulation of angiogenesis by modulating endothelial cell proliferation and migration. In human umbilical vein endothelial cells (HUVEC) and human blood outgrowth endothelial cells (BOEC), knockdown of PKD-1 or PKD-2 downregulates VEGFR-2 and significantly inhibits VEGF-induced endothelial cell proliferation and migration. We sought to determine the molecular mechanism through which PKD modulates VEGFR-2 expression. Based on bioinformatics data, activating enhancer binding protein 2 (AP2) binding sites exist within the VEGFR-2 promoter. Thus, we hypothesized PKD may downregulate VEGFR-2 through AP2-mediated transcriptional repression of the VEGFR-2 promoter. Indeed, AP2β binds the VEGFR-2 promoter upon PKD knockdown in HUVEC as evident by chromatin immunoprecipitation assay. Luciferase reporter assays using serial deletions of AP2β binding sites within the VEGFR-2 promoter revealed transcriptional activity negatively correlated with the number of AP2β binding sites, thus confirming negative regulation of VEGFR-2 transcription by AP2β. Next, using siRNA, we demonstrated that upregulation of AP2β decreased VEGFR-2 expression and loss of AP2β enhanced VEGFR-2 expression. In vivo studies confirmed this finding as we observed increased VEGFR-2 immunostaining in the dorsal horn of the spinal cord of embryonic day 13 AP2β knockout mice. We hypothesize that PKD directly regulates AP2β function by serine phosphorylation and ongoing studies are being conducted to determine phosphorylation sites in AP2β directly regulated by PKD. Taken together, we demonstrate AP2β negatively regulates VEGFR-2 transcription and VEGFR-2 is a major downstream target of PKD. Our findings describing how PKD regulates angiogenesis may contribute to the development of therapies to improve the clinical outcome of patients afflicted by heart disease, stroke, and cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Weilu Zhang ◽  
Ting Fu ◽  
Zhenjun Guo ◽  
Ye Zhang ◽  
Lei Zhang ◽  
...  

Background. There is an urgent need to identify ideal serological biomarkers that not only are closely related to disease progression from hepatitis B virus (HBV) infection to hepatocellular carcinoma (HCC) but also have high specificity and sensitivity. We conducted this study to analyze whether miR-375 has a potential value in the early prediction of the progression from HBV-related hepatitis or cirrhosis to HCC. Methods. A total of 177 participants were enrolled. Receiver operating characteristic (ROC) curve was used to evaluate the predictive capability of selected miR-375 for HBV-HCC. We upregulated the miR-375 expression in HepG2, HepG2.2.15, and HepAD38 cells to determine its effect on cellular proliferation and migration, in vitro using Cell Counting Kit-8 (CCK-8) assays. Results. Serum miR-375 levels decreased in order from healthy controls to chronic hepatitis B (CHB) without cirrhosis, followed by cirrhosis, and finally, HBV-HCC patients. miR-375 levels were significantly lower in HBeAg-positive and HBV DNA-positive patients than negative (P<0.05) and significantly lower in patients with elevated alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) than normal levels (P<0.05). miR-375 might be a biomarker for HBV-HCC, with a high area under the curve (AUC) of 0.838 (95% confidence interval (CI) 0.780 to 0.897; sensitivity: 73.9%; specificity: 93.0%). The AUC (0.768 vs. 0.584) and sensitivity (93.8% vs. 75.0%) for miR-375 were higher than those for AFP. The overexpression of miR-375 noticeably inhibited proliferation and migration in HepG2, HepG2.2.15, and HepAD38, especially in HepG2.2.15 and HepAD38, which are stably infected with HBV. Conclusions. Serum miR-375 levels are closely related to disease progression from HBV-related hepatitis or cirrhosis to HCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Jia He ◽  
Bin Xiao ◽  
Xiaoyan Li ◽  
Yongyin He ◽  
Linhai Li ◽  
...  

MicroRNAs have been broadly implicated in cancer, but precise functions and mechanisms in carcinogenesis vary among cancer types and in many cases remain poorly understood. Hepatocellular carcinoma (HCC) is among the most frequent and lethal cancers. The aim of the present study was to investigate the role of miR-486-5p in HCC and identify its specific target. MiR-486-5p was significantly downregulated in HCC tissues and cell lines compared with noncancerous tissues and, respectively, although expression level was not correlated with the degree of infiltration or tumor stage. However, miR-486-5p overexpression in HCC cells inhibited proliferation and migration as evidenced by CCK-8 cell counting, wound healing, and transwell assays, indicating that miR-486-5p is an HCC suppressor. We employed four miRNA databases to predict the target genes of miR-486-5p and verified retrieved genes using qPCR and western blotting. The E3 ubiquitin ligase CBL was significantly downregulated by miR-486-5p overexpression in HCC cell lines at both mRNA and protein level, and overexpression of CBL counteracted the inhibitory effects of miR-486-5p on HCC cell proliferation and migration. Moreover, CBL expression was negatively correlated with miR-486-5p expression in HCC tissues. Collectively, our results suggest that miR-486-5p may act as a tumor suppressor gene in HCC by downregulating CBL expression.


2016 ◽  
Vol 136 (8) ◽  
pp. B9
Author(s):  
A. Grada ◽  
X. Lin ◽  
D. Fiore ◽  
T. Yufit ◽  
P. Carson ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Natália Feofanova ◽  
Jony Marques Geraldo ◽  
Lídia Maria de Andrade

Much has been investigated to improve the beneficial effects of radiotherapy especially in that case where radioresistant behavior is observed. Beyond simple identification of resistant phenotype the discovery and development of specific molecular targets have demonstrated therapeutic potential in cancer treatment including radiotherapy. Alterations on transduction signaling pathway related with MAPK cascade are the main axis in cancer cellular proliferation even as cell migration and invasiveness in irradiated tumor cell lines; then, for that reason, more studies are in course focusing on, among others, DNA damage enhancement, apoptosis stimulation, and growth factors receptor blockages, showing promisingin vitroresults highlighting molecular targets associated with ionizing radiation as a new radiotherapy strategy to improve clinical outcome. In this review we discuss some of the main molecular targets related with tumor cell proliferation and migration as well as their potential contributions to radiation oncology improvements.


2020 ◽  
pp. 1-10
Author(s):  
Shujing Li ◽  
Yanyan Zhang ◽  
Jian Dong ◽  
Ruihuan Li ◽  
Bo Yu ◽  
...  

Long non-coding RNAs (lncRNAs) are important to the occurrence and advancement of human cancers. We found through GEPIA that LINC00893 was lowly expressed in thyroid carcinoma (THCA) tissues, whereas the specific functions of LINC00893 has never been reported in PTC. In the current study, we confirmed that LINC00893 was expressed at a low level in PTC cells. Through gain-of-function assays, we determined that LINC00893 overexpression abrogated proliferation and migration abilities of PTC cells. Through signal transduction reporter array we found that LINC00893 potentially modulated the signals of phosphatase and tensin homolog (PTEN)/AKT pathway. In addition, overexpression of LINC00893 increased the expression of PTEN but reduced the levels of phosphorylated AKT in PTC. Additionally, mechanism assays unveiled that LINC00893 stabilized PTEN mRNA via recruiting Fused in sarcoma (FUS) protein. Finally, rescue assays demonstrated that LINC00893 hampered the proliferation and migration of PTC cells via PTEN/AKT pathway. Together, our study first clarified that LINC00893 functions as a tumor suppressor in PTC by blocking AKT pathway through PTEN upregulation.


Sign in / Sign up

Export Citation Format

Share Document