scholarly journals RESPONSE OF NEW GUINEA IMPATIENS TO FERTILITY LEVEL IS AFFECTED BY APPLICATION FREQUENCY

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 688c-688
Author(s):  
Laura K. Judd ◽  
Douglas A. Cox

New Guinea impatiens (Impatiens sp. hybrids) are particularly sensitive to growth medium soluble salts level during the first four to six weeks after potting. Results of this experiment show that this response is affected by the interaction of fertilizer rate and application frequency. Solutions containing 20N-4.3P-16.6K at 0.5, 1.0, 1.5, or 2.0 g·liter-1 were applied to `Selenia' growing in 520 ml pots 4, 8, 12, or 16 times (evenly-spaced) during a 70 day experiment. A significant interaction occurred between fertilizer rate and application frequency. Shoot dry weight (DW) increased linearly with application frequency at 0.5 g·liter-1. Overall 16 applications of 0.5 g· liter-1 resulted in the most growth of all rate and frequency combinations. Maximum DW at 1.0 g·liter-1 was achieved with 12 applications and 8 applications resulted in the most DW with 1.5 and 2.0 g·liter-1. In treatments where growth was inhibited, growth medium EC exceeded 1.0 dS·m-1. EC did not exceed 0.4 dS·m-1 at any application frequency with 0.5 g·liter-1.

HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1162g-1162
Author(s):  
Laura K. Judd ◽  
Douglas A. Cox

To test the effect of soluble salts on the growth of New Guinea impatiens (Impatiens platypetala), `Selenia' was grown for 70 days in a soilless medium and irrigated with solutions of 20N-4.3P-16.6K at rates of 0.5, 1.0, 1.5, or 2.0 g·liter-1. A fifth treatment was no fertilization for the first 14 days, 0.5 g·liter-1 for the next 14 days and 1.0 g·liter-1 till finish. At 14-day intervals shoot dry weight and growth medium soluble salts were measured. By 42 days after planting, differences between treatments were statistically significant with respect to dry weight. Over a 70-day period, growth was greatest with 0.5 g·liter-1. The 1.0 g·liter-1 treatment caused a similar growth response. Plants in delay treatment responded similarly to 0.5 and 1.0 g·liter-1. Higher rates, 1.5 and 2.0 g·liter-1, caused growth suppression and resulted in soluble salts buildup in the growth medium. Soluble salts levels of 1.5 dS·m-1 and above suppressed early growth. Results show that during the first 42-56 days of growth, New Guinea impatiens are sensitive to soluble salts and levels over 1.5 dS·m-1 are cause for concern.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1193-1194 ◽  
Author(s):  
Laura K. Judd ◽  
Douglas A. Cox

To test the effects of fertilizer concentration and growth medium electrical conductivity (EC) on the growth of New Guinea impatiens (Impatiens sp. hybrids or I. platypetala Lindl.), plants of `Selenia' were grown 70 days in a commercial soilless medium and irrigated with solutions of 20N-4.3P-16.6K at concentrations of 0.5, 1.0, 1.5, or 2.0 g·liter-1. In a fifth treatment (“delay”), no fertilizer was applied for the first 14 days after planting, then 0.5 g·liter-1 was applied for the next 14 days, followed by 1.0 g·liter-1 until the end of the experiment. Measurements of shoot dry weight and growth medium EC were made at 14-day intervals. Differences in dry weight between fertilizer treatments became significant (P = 0.0001) 42 days after planting. Over the 70-day experiment, plants grew most with 0.5 g·liter-1 and delay treatments. High fertilizer concentrations (1.5 and 2.0 g·liter-1) caused the most growth suppression and resulted in increasing growth medium EC with time. An EC of ≈1.5 dS·m-1 or higher was associated with suppressed growth beginning 42 days after planting. A mild chlorosis developed on the leaves of some plants at the two highest fertilizer concentrations.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 859A-859
Author(s):  
Matthew W. Kent ◽  
David Wm. Reed

Greenhouse cultural methods must change rapidly to minimize runoff and to keep pace with environmental regulation aimed at protecting water resources. Two experiments were designed to investigate the effect of N fertilization rate on New Guinea impatiens (Impatiens ×hawkeri) and peace lily (Spathiphyllum Schott) in an ebb-and-flow subirrigation system. Maximum growth response for impatiens was centered around 8-mM N levels as measured by root and shoot fresh and dry weight, height, leaf number, leaf area, and chlorophyll concentration. For peace lily, growth peaked around 10 mM N. Growing medium was divided into three equal layers: top, middle, and bottom. Root distribution favored the middle and bottom layers, and the relative distribution of roots was consistent as N level increased. Soluble salts remained low in middle and bottom layers at N concentrations below 10 mM, but increased significantly for all soil layers at levels above 10 mM. The top layer contained two to five times higher soluble salt levels than in the middle or bottom layers at all N levels. Increased nitrate concentration mimicked increases in soluble salts, while pH decreased as N concentration increased for both impatiens and peace lily.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 701f-701
Author(s):  
Traci Armstrong ◽  
Matthew W. Kent ◽  
David Wm. Reed

With the rising concern for the environment and an increase in governmental regulation, greenhouse growers must find alternative methods for irrigation that will avoid ground and surface water contamination. Subirrigation is one of these alternatives, but subirrigation is more sensitive to water quality than traditional systems and many growers are faced with poor water quality. This experiment tested seven different water sources from across the state of Texas. Each source was replicated twice using New Guinea impatiens `Illusion'. Leaf count, plant height, and plant width were measured at 2-week intervals. Plants were harvested at 8 weeks and measured for shoot fresh weight, shoot dry weight, and overall quality. Electrical conductivity of the upper, middle, and bottom layers of the container medium was measured. Compared to the reverse osmosis control, fresh weight was reduced by 12% to 30%, average leaf number by –7% to 56%, quality evaluation by –8% to 61%, average width by –5% to 27%, and the average height by 8% to 34%. The results will be explained based on differences in analysis of the various water and media samples.


2004 ◽  
Vol 14 (4) ◽  
pp. 491-495 ◽  
Author(s):  
Wagner Vendrame ◽  
Kimberly K. Moore ◽  
Timothy K. Broschat

New guinea impatiens (Impatiens hawkeri) (NGI) `Pure Beauty Rose' (PBR) and `Paradise Orchid' (PO) were grown in full sun, 55% shade, or 73% shade and fertilized with a controlled-release fertilizer (CRF) [Nutricote Total 13-13-13 (13N-5.7P-10.8K), type 100] incorporated at rates of 2, 4, 6, 8, 12, 16, 20, 24, 28 and 32 lb/yard3 of growing media (1.2, 2.4, 3.6, 4.7, 7.1, 9.5, 11.9, 14.2, 16.6, and 19.0 kg·m-3). Plant quality rating, shoot dry weight, and flower number were measured at harvest and substrate samples were collected to analyze final substrate pH and electrical conductivity (EC). For both cultivars, light intensity and fertilization rate interactions were different for shoot dry weight and flower number, but there was no difference in plant quality rating between the light levels. Quality ratings of both PBR and PO plants increased as CRF rate increased to 12 to 16 lb/yard3 above these levels quality was not improved. Shoot dry weight of PBR plants grown in full sun increased as CRF rate increased to 28 lb/yard3 and then decreased, while shoot dry weight of plants grown with 55% and 73% shade increased as CRF rate increased to 20 and 16 lb/yard3, respectively, with no further increases. Shoot dry weight of PO plants grown in full sun and 55% shade increased as CRF rate increased to 28 and 24 lb/yard3, respectively, with no further increases, while shoot dry weight of plants grown with 73% shade increased as CRF rate increased to 24 lb/yard3 and then decreased. Flower number of PBR plants grown in full sun, 55% shade, and 73% shade increased as CRF rate increased to 24 lb/yard3 and then decreased. Flower number of PO plants grown in full sun increased as CRF rate increased to 28 lb/yard3 and then decreased, while flower number of plants grown in 55% and 73% shade increased as CRF rate increased to 24 lb/yard3 and then decreased.


2001 ◽  
Vol 19 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Wallace G. Pill ◽  
James A. Gunter

Abstract This study was conducted to determine whether treating seeds of ‘Sensation Mixed’ cosmos (Cosmos bipinnatus Cav.) and ‘Bonanza Gold’ marigold (Tagetes patula L.) with paclobutrazol (PB) could suppress seedling growth. Seeds were soaked in solutions of 0, 500 or 1000 mg PB/liter (ppm PB) for 16 hours at 25C (77F) or they were primed [−0.5 MPa (−5 bars) for 7 days at 20C (68F)] in Grade 5 exfoliated vermiculite moistened with 0, 500 or 1000 ppm PB solltuions. Soaked and primed seeds were dried for 1 day at 19C (65F) and 25% relative humidity. These seeds and control (non-treated) seeds were sown into plug cells containing peat-lite. Increasing PB concentration decreased cosmos shoot height at 32 days after planting (DAP), but decreased emergence percentage, responses that were more pronounced with priming than with soaking. A 1 ppm PB growth medium drench [30 ml/cell(0.2 mg PB/cell)] and, to a greater extent a 10 mg PB/liter (ppm PB) shoot spray [2 ml/shoot (0.02 mg PB/shoot)], both applied at 10 DAP, resulted in greater cosmos shoot height suppression at 32 DAP than treatment of seeds with 1000 ppm PB. Soaking marigold seeds in 1000 ppm PB failed to decrease shoot height below those of plants from non-treated seeds at 32 DAP. However, exposure to 1000 ppm PB during priming of marigold seeds resulted in a similar shoot height suppression (13%) as the growth medium drench, and similar shoot dry weight reduction (21%) as the shoot spray. Suppression of shoot growth by this seed treatment was short-term since by five weeks after transplanting into 15 cm (6 in) pots, only marigold plants that had received the growth medium drench or shoot spray were smaller than those of control plants. Treating marigold seeds with 1000 mg ppm PB used about one-fifth the PB used to drench the growth medium.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 546B-546 ◽  
Author(s):  
John M. Ruter

A study was conducted with Prunus × incamp `Okame' to evaluate the effects of a pot-in-pot production system compared to a conventional above-ground system and cyclic irrigation on plant growth and water loss. Plants were grown in #7 (26-L) containers with a 8:1 pinebark:sand (v/v) substrate. Cyclic irrigation provided the same total volume of water, but was applied one, three, or four times per day. Final plant height and stem diameter, shoot and root dry weight, total biomass, and root:shoot ratio were all increased for plants grown pot-in-pot compared to above-ground. Multiple irrigation cycles increased stem diameter, shoot dry weight, and total biomass, compared to a single irrigation application. Multiple irrigation cycles decreased the root:shoot ratio. Evapotranspiration was influenced by production system, irrigation, and date. Amount of water lost as leachate was influenced by irrigation and date. Cyclic irrigation resulted in a two-fold decrease in leachate volume. Soluble salts and nitrate-nitrogen in the leachate were influenced by an interaction between production system, irrigation, and date.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 463B-463
Author(s):  
J.O. Glenn ◽  
C.H. Gilliam ◽  
J.H. Edwards ◽  
G.J. Keever ◽  
J. Olive ◽  
...  

Recycled paper pellets in the bottom of containers were evaluated for retention of N from container leachate. `Formosa' azalea were transplanted on 15 Apr. in 2.8-L containers in a pine bark/peat substrate (3:1; v/v). Treatments included paper (0 or 2.5 cm depth) in the bottom of containers and two rates of Osmocote 18–6–12 (0.68 kg or 1.36 kg N/yd3). Immediately after transplanting, plants were topdressed with 3.2 g of 12–4–6 fertilizer. Data collected included leachate samples every 2 weeks for NO3-N and NH4-N levels and destructive sampling every 4 weeks for shoot dry weight, foliar N, and total paper N. Nitrate-N and NH4-N leachate concentrations were reduced with the 0.68 kg N/yd3 fertilizer rate and with paper. For example, 28 days after planting (DAP) NO3-N leachate concentrations were reduced 36% with the 0.68 kg N/yd3 fertilizer rate and 46% with paper in the bottom of containers. NH4-N in the leachates was reduced 53% with the 0.68 kg N/yd3 fertilizer rate and 59% with paper. Azalea shoot dry weight was not affected by paper or fertilizer rate up to 112 DAP; however, as the study progressed, plants with paper in the bottom of containers grew larger than plants in no paper treatments (29% at 168 DAP, 31% at 196 DAP). Total N absorbed by paper was not affected by fertilizer rate, and peaked at 168 DAP [980 (0.68 kg N/yd3) to 1066 (1.36 kg N/yd3) mg per container, or 41% – 28% of applied N], after which it began to decline. This decline in paper N was associated with greater growth of azalea with paper.


HortScience ◽  
1991 ◽  
Vol 26 (7) ◽  
pp. 856-857 ◽  
Author(s):  
Terri Woods Starman

Manually and chemically pinched plants of 18 cultivars of Impatiens hybrids (Kientzler New Guinea impatiens) were compared to control plants to determine the effect of shoot apex removal on flowering, plant size, and branching characteristics. Either pinching treatment delayed flowering by ≈3 days compared with nonpinched controls. Pinching had no effect on plant height or fresh or dry weight. Plant diameter and form changes due to pinching depended on cultivar. Total branch count was increased by chemical but not manual pinching although both pinching methods affected mode of branching. The 18 cultivars of Kientzler New Guinea impatiens were best grown as 0.4-liter potted plants without the aid of pinching.


HortScience ◽  
2011 ◽  
Vol 46 (5) ◽  
pp. 799-807 ◽  
Author(s):  
Gladis M. Zinati ◽  
John Dighton ◽  
Arend-Jan Both

We tested the effects of using an inoculum containing natural ericoid roots and soil (NERS) with two fertilizer and irrigation rates on plant growth, shoot (stems and leaves) nutrient concentration, leachate quality, and mycorrhizal colonization of container-grown Coast Leucothoe [Leucothoe axillaris (Lam.) D. Don] and Japanese Pieris [Pieris japonica (Thunb.) D. Don ex G. Don]. Uniform rooted liners were grown in 10.8-L containers in a pine bark, peatmoss, and sand (8:1:1 by volume) substrate medium in a randomized complete block design with four replications. A controlled-release fertilizer, Polyon® Plus 14-16-8 (14N–7P–6.6K), was incorporated in the substrate medium at the 100% manufacturer's recommended fertilizer rate [representing high fertilizer rate (HF)] (56 g per container) to supply 7.84 g nitrogen (N) and at 50% the manufacturer's recommended rate [representing low fertilizer rate (LF)]. Plants were irrigated using a cyclic drip irrigation system at high (HI) and low (LI) irrigation rates calibrated to supply 25.2 L of water and 16.8 L per week, respectively. On average, NERS inoculation increased shoot growth of Leucothoe and Pieris by 56% and 60%, respectively. Shoots of Leucothoe inoculated with NERS had higher N, phosphorus (P), magnesium (Mg), and manganese (Mn) concentrations than non-inoculated plants. At LF, nitrous-N (NOx-N) and orthophosphorus (PO4-P) concentrations in the leachate were reduced by 53% from Leucothoe and 62% from Pieris compared with HF-treated plants. A reduction of 37% and 36% in PO4-P concentration in leachates from Leucothoe and Pieris, respectively, were achieved at the reduced irrigation (LI) rate. The NERS inoculation reduced PO4-P concentrations in leachate from Leucothoe by 26% and NOx-N concentration by 33% in leachates from Pieris compared with non-inoculated plants. Compared with plants grown in the HI–HF treatment, the combination of LI–LF treatment reduced NOx-N concentrations in leachates from Leucothoe by 60% (P = 0.016) and reduced PO4-P leachate concentrations from Pieris by 72% (P = 0.0096). Decreasing the fertilizer rate to 50% of the recommended rate and the irrigation rate to 67% of the recommended rate in conjunction with the incorporation of NERS reduced leachate nutrient concentrations of two main water pollutants (NOx-N and PO4-P). Adopting the practice of adding NERS containing fungi and bacteria can be an effective system to increase shoot dry weight, allow reduction in fertilizer application, conserve water for irrigation, and minimize subsequent nutrient runoff in nursery operations.


Sign in / Sign up

Export Citation Format

Share Document